Heart failure (HF) patients represent one of the most prevalent as well as one of the most fragile population encountered in the cardiology and internal medicine departments nowadays. Estimated to account for around 26 million people worldwide, diagnosed patients present a poor prognosis and quality of life with a clinical history accompanied by repeated hospital admissions caused by an exacerbation of their chronic condition. The frequent hospitalizations and the extended hospital stays mean an extremely high economic burden for healthcare institutions. Meanwhile, the number of chronically diseased and elderly patients is continuously rising, and a lack of specialized physicians is evident. To cope with this health emergency, more efficient strategies for patient management, more accurate diagnostic tools, and more efficient preventive plans are needed. In recent years, telemonitoring has been introduced as the potential answer to solve such needs. Different methodologies and devices have been progressively investigated for effective home monitoring of cardiologic patients. Invasive hemodynamic devices, such as CardioMEMS™, have been demonstrated to be reducing hospitalizations and mortality, but their use is however restricted to limited cases. The role of external non-invasive devices for remote patient monitoring, instead, is yet to be clarified. In this review, we summarized the most relevant studies and devices that, by utilizing non-invasive telemonitoring, demonstrated whether beneficial effects in the management of HF patients were effective.
Pressure–volume (PV) analysis is the most comprehensive way to describe cardiac function, giving insights into cardiac mechanics and energetics. However, PV analysis still remains a highly invasive and time-consuming method, preventing it from integration into clinical practice. Most of the echocardiographic parameters currently used in the clinical routine to characterize left ventricular (LV) systolic function, such as LV ejection fraction and LV global longitudinal strain, do not take the pressure developed within the LV into account and therefore fall too short in describing LV function as a hydraulic pump. Recently, LV pressure-strain analysis has been introduced as a new technique to assess myocardial work in a non-invasive fashion. This new method showed new insights in comparison to invasive measurements and was validated in different cardiac pathologies, e.g., for the detection of coronary artery disease, cardiac resynchronization therapy (CRT)-response prediction, and different forms of heart failure. Non-invasively assessed myocardial work may play a major role in guiding therapies and estimating prognosis. However, its incremental prognostic validity in comparison to common echocardiographic parameters remains unclear. This review aims to provide an overview of pressure-strain analysis, including its current application in the clinical arena, as well as potential fields of exploitation.
Background Cardiac power output (CPO), derived from the product of cardiac output and mean aortic pressure, is an important yet underexploited parameter for hemodynamic monitoring of critically ill patients in the intensive-care unit (ICU). The conductance catheter-derived pressure-volume loop area reflects left ventricular stroke work (LV SW). Dividing LV SW by time, a measure of LV SW min− 1 is obtained sharing the same unit as CPO (W). We aimed to validate CPO as a marker of LV SW min− 1 under various inotropic states. Methods We retrospectively analysed data obtained from experimental studies of the hemodynamic impact of mild hypothermia and hyperthermia on acute heart failure. Fifty-nine anaesthetized and mechanically ventilated closed-chest Landrace pigs (68 ± 1 kg) were instrumented with Swan-Ganz and LV pressure-volume catheters. Data were obtained at body temperatures of 33.0 °C, 38.0 °C and 40.5 °C; before and after: resuscitation, myocardial infarction, endotoxemia, sevoflurane-induced myocardial depression and beta-adrenergic stimulation. We plotted LVSW min− 1 against CPO by linear regression analysis, as well as against the following classical indices of LV function and work: LV ejection fraction (LV EF), rate-pressure product (RPP), triple product (TP), LV maximum pressure (LVPmax) and maximal rate of rise of LVP (LV dP/dtmax). Results CPO showed the best correlation with LV SW min− 1 (r2 = 0.89; p < 0.05) while LV EF did not correlate at all (r2 = 0.01; p = 0.259). Further parameters correlated moderately with LV SW min− 1 (LVPmaxr2 = 0.47, RPP r2 = 0.67; and TP r2 = 0.54). LV dP/dtmax correlated worst with LV SW min− 1 (r2 = 0.28). Conclusion CPO reflects external cardiac work over a wide range of inotropic states. These data further support the use of CPO to monitor inotropic interventions in the ICU.
Background Cardiovascular magnetic resonance (CMR) strain imaging is an established technique to quantify myocardial deformation. However, to what extent left ventricular (LV) systolic strain, and therefore LV mechanics, reflects classical hemodynamic parameters under various inotropic states is still not completely clear. Therefore, the aim of this study was to investigate the correlation of LV global strain parameters measured via CMR feature tracking (CMR-FT, based on conventional cine balanced steady state free precession (bSSFP) images) with hemodynamic parameters such as cardiac index (CI), cardiac power output (CPO) and end-systolic elastance (Ees) under various inotropic states. Methods Ten anaesthetized, healthy Landrace swine were acutely instrumented closed-chest and transported to the CMR facility for measurements. After baseline measurements, two steps were performed: (1) dobutamine-stress (Dobutamine) and (2) verapamil-induced cardiovascular depression (Verapamil). During each protocol, CMR images were acquired in the short axisand apical 2Ch, 3Ch and 4Ch views. MEDIS software was utilized to analyze global longitudinal (GLS), global circumferential (GCS), and global radial strain (GRS). Results Dobutamine significantly increased heart rate, CI, CPO and Ees, while Verapamil decreased them. Absolute values of GLS, GCS and GRS accordingly increased during Dobutamine infusion, while GLS and GCS decreased during Verapamil. Linear regression analysis showed a moderate correlation between GLS, GCS and LV hemodynamic parameters, while GRS correlated poorly. Indexing global strain parameters for indirect measures of afterload, such as mean aortic pressure or wall stress, significantly improved these correlations, with GLS indexed for wall stress reflecting LV contractility as the clinically widespread LV ejection fraction. Conclusion GLS and GCS correlate accordingly with LV hemodynamics under various inotropic states in swine. Indexing strain parameters for indirect measures of afterload substantially improves this correlation, with GLS being as good as LV ejection fraction in reflecting LV contractility. CMR-FT-strain imaging may be a quick and promising tool to characterize LV hemodynamics in patients with varying degrees of LV dysfunction.
AimsPatients referred to the cath-lab are an increasingly elderly population. Thermodilution (TD, gold standard) and the estimated Fick method (eFM) are interchangeably used in the clinical routine to measure cardiac output (CO). However, their correlation in an elderly cohort of cardiac patients has not been tested so far.MethodsA single, clinically-indicated right heart catheterization was performed on each patient with CO estimated by eFM and TD in 155 consecutive patients (75.1±6.8 years, 57.7% male) between April 2015 and August 2017. Whole Body Oxygen Consumption (VO2) was assumed by applying the formulas of LaFarge (LaF), Dehmer (De) and Bergstra (Be). CO was indexed to body surface area (Cardiac Index, CI).ResultsCI-TD showed an overall moderate correlation to CI-eFM as assessed by LaF, De or Be (r2 = 0.53, r2 = 0.54, r2 = 0.57, all p < .001, respectively) with large limits of agreement (-0.64 to 1.09, -1.07 to 0.77, -1.38 to 0.53 l/m2/min, respectively). The mean difference of CI between methods was 0.22, -0.15 and -0.42 (all p<0.001 for difference to TD), respectively. A rate of error ≥20% occurred with the equations by LaF, De or Be in 40.6%, 26.5% and 36.1% of patients, respectively. A CI <2.2 l/m2min was present in 42.6% of patients according to TD and in 60.0%, 31.0% and in 16.1% of patients according to eFM by the formulas of LaF, De or Be.ConclusionAlthough CI-eFM shows an overall reasonable correlation with CI-TD, the predictive value in a single patient is low. CI-eFM cannot replace CI-TD in elderly patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.