Pristimerin is a natural product derived from the Celastraceae and Hippocrateaceae families that were used as folk medicines for anti inflammation in ancient times. Although it has been shown that pristimerin induces apoptosis in breast cancer cells, the involved mechanism of action is unknown. The purpose of the current study is to investigate the primary target of pristimerin in human cancer cells, using prostate cancer cells as a working model. Nucleophilic susceptibility and in silico docking studies show that C6 of pristimerin is highly susceptible towards a nucleophilic attack by the hydroxyl group of N-terminal threonine of the proteasomal chymotrypsin subunit. Consistently, pristimerin potently inhibits the chymotrypsin-like activity of a purified rabbit 20S proteasome (IC50 2.2 micromol/L) and human prostate cancer 26S proteasome (IC50 3.0 micromol/L). The accumulation of ubiquitinated proteins and three proteasome target proteins, Bax, p27 and I kappa B-alpha, in androgen receptor (AR)-negative PC-3 prostate cancer cells supports the conclusion that proteasome inhibition by pristimerin is physiologically functional. This observed proteasome inhibition subsequently led to the induction of apoptotic cell death in a dose- and kinetic-dependent manner. Furthermore, in AR-positive, androgen-dependent LNCaP and AR-positive, androgen-independent C4-2B prostate cancer cells, proteasome inhibition by pristimerin results in suppression of AR protein prior to apoptosis. Our data demonstrate, for the first time, that the proteasome is a primary target of pristimerin in prostate cancer cells and inhibition of the proteasomal chymotrypsin-like activity by pristimerin is responsible for its cancer cell death-inducing property.
A total of seven Kudingcha genotypes from three plant species (Ilex kudingcha, Ilex cornuta, and Ligustrum robustum) with different geographic origins in China were investigated for their major phenolic compounds, individual and total phenolics contents, and in vitro antioxidant properties (ABTS, DPPH, FRAP, and OH assays). LC-PDA-APCI-MS analysis showed that Kudingcha genotypes from Ilex and Ligustrum had entirely different phenolic profiles. Major phenolics in Kudingcha genotypes from two Ilex species were mono- and dicaffeoylquinic acids, whereas those in a Kudingcha genotype from Ligustrum were phenylethanoid and monoterpenoid glycosides. All Kudingcha genotypes of Ilex exhibited significantly stronger antioxidant capacities than that of Ligustrum. Within six Ilex genotypes, great variation existed in their composition of individual phenolic compounds and their antioxidant properties. The comparative data and LC fingerprints obtained in this study may provide useful information for screening and breeding of better Kudingcha genotypes and also for their authentication and quality control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.