Autosomal dominant mutations in the bHLH transcription factor TWIST1 are associated with limb and craniofacial defects in humans with Saethre-Chotzen syndrome (SCS). The molecular mechanism underlying these phenotypes is poorly understood. We show that the ectopic expression of the related bHLH factor Hand2 phenocopies Twist1 loss-of-function phenotypes in the limb, and that they display a gene dosage-dependent antagonistic interaction. Twist1 and Hand2 dimerization partner choice can be modulated by PKA and protein phosphatase 2A-regulated phosphorylation of conserved helix I residues. Interestingly, multiple TWIST1 mutations associated with SCS alter PKA-mediated Twist1 phosphorylation, suggesting that misregulation of Twist1 dimerization via either stoichiometric or posttranslational mechanisms underlies SCS phenotypes.Studies of developing vertebrate limbs have yielded many insights into the process of embryonic pattern formation. Prominent among these are the identification of a growing catalog of transcription factors that orchestrate limb patterning. While the genetic and biochemical interactions of these transcription factors are clearly important for integrating patterning information, these interactions are poorly understood. Twist1 and Hand2 are basic helix-loop-helix (bHLH) transcription factors within the Twist family, and are attractive candidates for investigating such interactions. Each is required for distinct yet subtly related aspects of limb development, and biochemical studies have revealed a complex regulation of their protein-protein interactions 1-3 .Early limb bud expression of Twist1 is observed primarily in the peripheral mesenchyme, and Twist1 is required for maintenance of the overlying apical ectodermal ridge (AER) 4-7 . Twist1 haploinsufficiency in mice and humans is associated with a range of limb abnormalities. Twist1 heterozygous null mice display a partially penetrant preaxial polydactyly 8,9 . Human Correspondence should be addressed to A.B.F. tfirulli@iupui.edu (317) 278-5814 and E.L. elaufer@columbia.edu (212) Here we investigate the biochemical and genetic interactions between Twist1 and Hand2 both in vitro and during limb development. We show that PKA and B56δ-containing PP2A can regulate Twist1 and Hand2 phosphorylation at the conserved helix I residues, that hypophosphorylation and phosphorylation mimics of these residues alter bHLH dimerization affinities, and that a population of TWIST1 mutations that cause SCS in humans exhibit disregulation of this phosphoregulatory circuit. We also show that ectopic Hand2 expression phenocopies multiple SCS-like limb phenotypes, that the appropriate genetic dosage of Hand2 and Twist1 is critical for proper limb development, and that these interactions require the phosphoregulated helix I residues. These findings support a mechanism where the Twist family dimerization partner choices are modulated by both the relative levels of gene expression and the phosphorylation state of key helix I residues, thereby dictating changes i...
In the mouse embryo, asymmetric divisions during the 8-16 cell division generate two cell types, polar and apolar cells, that are allocated to outer and inner positions, respectively. This outer/inner configuration is the first sign of the formation of the first two cell lineages: trophectoderm (TE) and inner cell mass (ICM). Outer polar cells become TE and give rise to the placenta, whereas inner apolar cells become ICM and give rise to the embryo proper and yolk sac. Here, we analyze the frequency of asymmetric divisions during the 8-16 cell division and assess the relationships between cell polarity, cell and nuclear position, and Hippo signaling activation, the pathway that initiates lineage-specific gene expression in 16-cell embryos. Although the frequency of asymmetric divisions varied in each embryo, we found that more than six blastomeres divided asymmetrically in most embryos. Interestingly, many apolar cells in 16-cell embryos were located at outer positions, whereas only one or two apolar cells were located at inner positions. Live imaging analysis showed that outer apolar cells were eventually internalized by surrounding polar cells. Using isolated 8-cell blastomeres, we carefully analyzed the internalization process of apolar cells and found indications of higher cortical tension in apolar cells than in polar cells. Last, we found that apolar cells activate Hippo signaling prior to taking inner positions. Our results suggest that polar and apolar cells have intrinsic differences that establish outer/inner configuration and differentially regulate Hippo signaling to activate lineage-specific gene expression programs.
The primitive endoderm (PE) and epiblast (EPI) are two lineages derived from the inner cell mass (ICM) of the E3.5 blastocyst. Although it has been shown that FGF signaling is necessary and sufficient for PE specification in the ICM, it is unknown what mechanisms control the PE/EPI proportion in the embryo. Because modulation of FGF signaling alone is sufficient to convert all ICM cells to either PE or EPI, a model has been proposed in which the amount of FGF in the embryo controls the PE/EPI proportion. To test this model, we reduced the amount of FGF4, the major FGF in the preimplantation embryo, using various genotypes of Fgf4 mutants. We observed a maternal contribution of Fgf4 in PE specification, but it was dispensable for development. In addition, upon treatment of Fgf4 mutant embryos with exogenous FGF4, we observed a progressive increase of PE proportions in an FGF4 dose dependent manner, regardless of embryo genotype. We conclude that the amount of FGF4 is limited and regulates PE/EPI proportions in the mouse embryo.
Studies of the innervation of limb muscles by spinal motor neurons have helped to define mechanisms by which axons establish trajectories to their targets. Related motor axons select dorsal or ventral pathways at the base of the limb, raising the question of how these alternate trajectories are specified. EphA signaling has been proposed to control the dorsal trajectory of motor axons in conjunction with other signaling systems, although the respective contributions of each system to motor axon guidance are unclear. We show that the expression of EphB receptors by motor axons, and ephrin-B ligands by limb mesenchymal cells, directs the ventral trajectory of motor axons. Our findings reveal symmetry in the molecular strategies that establish this aspect of nerve-muscle connectivity. The involvement of ephrin:Eph signaling in guiding both sets of motor axons raises the possibility that other signaling systems function primarily to refine or modulate a core Eph signaling program.
We have previously described a SWI/SNF-related protein complex (PYR complex) that is restricted to definitive (adult-type) hematopoietic cells and that specifically binds DNA sequences containing long stretches of pyrimidines. Deletion of an intergenic DNA-binding site for this complex from a human -globin locus construct results in delayed human ␥-to -globin switching in transgenic mice, suggesting that the PYR complex acts to facilitate the switch. We now show that PYR complex DNA-binding activity also copurifies with subunits of a second type of chromatin-remodeling complex, nucleosome-remodeling deacetylase (NuRD), that has been shown to have both nucleosome-remodeling and histone deacetylase activities. Gel supershift assays using antibodies to the ATPase-helicase subunit of the NuRD complex, Mi-2 (CHD4), confirm that Mi-2 is a component of the PYR complex. In addition, we show that the hematopoietic cell-restricted zinc finger protein Ikaros copurifies with PYR complex DNA-binding activity and that antibodies to Ikaros also supershift the complex. We also show that NuRD and SWI/SNF components coimmunopurify with each other as well as with Ikaros. Competition gel shift experiments using partially purified PYR complex and recombinant Ikaros protein indicate that Ikaros functions as a DNA-binding subunit of the PYR complex. Our results suggest that Ikaros targets two types of chromatin-remodeling factors-activators (SWI/SNF) and repressors (NuRD)-in a single complex (PYR complex) to the -globin locus in adult erythroid cells. At the time of the switch from fetal to adult globin production, the PYR complex is assembled and may function to repress ␥-globin gene expression and facilitate ␥-to -globin switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.