Understanding of the importance of the normal intestinal microbial community in regulating microbial homeostasis, host metabolism, adaptive immune responses, and gut barrier functions has opened up the possibility of manipulating the microbial composition to modulate the activity of various intestinal and systemic diseases using fecal microbiota transplant (FMT). It is therefore not surprising that use of FMT, especially for treating relapsed/refractory Clostridioides difficile infections (CDI), has increased over the last decade. Due to the complexity associated with and treatment for these diseases, patients with hematologic and oncologic diseases are particularly susceptible to complications related to altered intestinal microbial composition. Therefore, they are an ideal population for exploring FMT as a therapeutic approach. However, there are inherent factors presenting as obstacles for the use of FMT in these patients. In this review paper, we discussed the principles and biologic effects of FMT, examined the factors rendering patients with hematologic and oncologic conditions to increased risks for relapsed/refractory CDI, explored ongoing FMT studies, and proposed novel uses for FMT in these groups of patients. Finally, we also addressed the challenges of applying FMT to these groups of patients and proposed ways to overcome these challenges.
Evidence that the gut microbiota plays a key role in the pathogenesis of Alzheimer’s disease is already un-ravelling. The microbiota-gut-brain axis is a bidirectional communication system that is not fully understood but includes neural, immune, endocrine, and metabolic pathways. The progression of Alzheimer’s disease is supported by mechanisms related to the imbalance in the gut microbiota and the development of amyloid plaques in the brain, which are at the origin of Alzheimer's disease. Alterations in the composition of the gut microbiome led to dysregulation in the pathways governing this system. This leads to neurodegeneration through neuroinflammation and neurotransmitter dysregulation. Neurodegeneration and disruption of the blood-brain barrier are frontiers at the origin of Alzheimer’s disease. Furthermore, bacteria populating the gut microbiota can secrete large amounts of amyloid proteins and lipopolysaccharides, which modulate signaling pathways and alter the production of proinflammatory cytokines associated with the pathogenesis of Alz-heimer's disease. Importantly, through molecular mimicry, bacterial amyloids may elicit cross-seeding of misfolding and induce microglial priming at different levels of the brain-gut-microbiota axis. The potential mechanisms of amyloid spreading include neuron-to-neuron or distal neuron spreading, direct blood-brain barrier crossing, or via other cells such as astrocytes, fibroblasts, microglia, and immune system cells. Gut microbiota metabolites, including short-chain fatty acids, pro-inflammatory factors, and neurotransmitters may also affect AD pathogenesis and associated cognitive decline. The purpose of this review is to summarize and discuss the current findings that may elucidate the role of gut microbiota in the development of Alzheimer's disease. Understanding the underlying mechanisms may provide new insights into novel therapeutic strategies for Alzheimer's disease, such as probiotics and targeted oligosaccharides.
Hemosuccus pancreaticus is a rare cause of gastrointestinal bleeding that usually presents with melena and abdominal pain. It is defined as a hemorrhage from the ampulla of Vater passing through the main pancreatic duct toward the second portion of the duodenum. Imaging is usually required to establish a diagnosis, and angiography continues to be the gold standard for both treatment and diagnosis. In some instances where bleeding is uncontrolled or if the patient is unstable, surgery may be required. Physicians should have a high index of suspicion, especially in patients with a history of chronic pancreatitis, as this diagnosis is associated with a very high mortality rate if left untreated. We report a case of a 67-year-old male with a known history of chronic pancreatitis and pancreatic pseudocyst who presented with melena and right upper quadrant abdominal pain and was found to have hemosuccus pancreaticus secondary to a gastroduodenal artery bleed. He underwent successful angiographic embolization and was discharged home after ensuring resolution of bleed and improvement in symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.