Respiratory rate (RR) is an important vital sign marker of health, and it is often neglected due to a lack of unobtrusive sensors for objective and convenient measurement. The respiratory modulations present in simple photoplethysmogram (PPG) have been useful to derive RR using signal processing, waveform fiducial markers, and hand-crafted rules. An endto-end deep learning approach based on residual network (ResNet) architecture is proposed to estimate RR using PPG. This approach takes time-series PPG data as input, learns the rules through the training process that involved an additional synthetic PPG dataset generated to overcome the insufficient data problem of deep learning, and provides RR estimation as outputs. The inclusion of a synthetic dataset for training improved the performance of the deep learning model by 34%. The final mean absolute error performance of the deep learning approach for RR estimation was 2.5±0.6 brpm using 5-fold cross-validation in two widely used public PPG datasets (n=95) with reliable RR references. The deep learning model achieved comparable performance to that of a classical method, which was also implemented for comparison. With large real-world data and reference ground truth, deep learning can be valuable for RR or other vital sign monitoring using PPG and other physiological signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.