The fluctuation of real estate prices has an important impact on China's economic development. Accurate prediction of real estate market price changes has become the focus of scholars. The existing prediction methods not only have great limitations on the input variables but also have many deficiencies in the nonlinear prediction. In the process of real estate market price forecasting, the priority of data and the seasonal fluctuation of housing price are important influencing factors, which are not taken into account in the traditional model. In order to overcome these problems, a novel grey seasonal model is proposed to predict housing prices in China. The main method is to introduce seasonal factor decomposition into the new information priority grey prediction model. Two practical examples are used to test the performance of the new information priority grey seasonal model. The results show that compared with the existing prediction models, this method has better applicability and provides more accurate prediction results. Therefore, the proposed model can be a simple and effective tool for housing price prediction. At the same time, according to the prediction results, this paper analyzes the causes of housing price changes and puts forward targeted suggestions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.