Molybdenum carbide (Mo2C) is recognized as an alternative electrocatalyst to noble metal for the hydrogen evolution reaction (HER). Herein, a facile, low cost, and scalable method is provided for the fabrication of Mo2C‐based eletrocatalyst (Mo2C/G‐NCS) by a spray‐drying, and followed by annealing. As‐prepared Mo2C/G‐NCS electrocatalyst displays that ultrafine Mo2C nanopartilces are uniformly embedded into graphene wrapping N‐doped porous carbon microspheres derived from chitosan. Such designed structure offer several favorable features for hydrogen evolution application: 1) the ultrasmall size of Mo2C affords a large exposed active sites; 2) graphene‐wrapping ensures great electrical conductivity; 3) porous structure increases the electrolyte–electrode contact points and lowers the charge transfer resistance; 4) N‐dopant interacts with H+ better than C atoms and favorably modifies the electronic structures of adjacent Mo and C atoms. As a result, the Mo2C/G‐NCS demonstrates superior HER activity with a very low overpotential of 70 or 66 mV to achieve current density of 10 mA cm−2, small Tafel slope of 39 or 37 mV dec−1, respectively, in acidic and alkaline media, and high stability, indicating that it is a great potential candidate as HER electrocatalyst.
A highly uniform N-doped carbon nanoflower was demonstrated as a bifunctional material for efficient electrocatalytic oxygen reduction and high performance lithium–sulfur batteries.
Rational design of hollow micro‐ and/or nano‐structured cathodes as sulfur hosts has potential for high‐performance lithium‐sulfur batteries. However, their further commercial application is hindered because infusing sulfur into hollow hosts is hard to control and the interactions between high loading sulfur and electrolyte are poor. Herein, we designed hierarchical porous hollow carbon nanospheres with radially inwardly aligned supporting ribs to mitigate these problems. Such a structure could aid the sulfur infusion and maximize sulfur utilization owing to the well‐ordered pore channels. This highly organized internal carbon skeleton can also enhance the electronic conductivity. The hollow carbon nanospheres with further nitrogen‐doping as the sulfur host material exhibit good capacity and excellent cycling performance (0.044 % capacity degradation per each cycle for 1000 cycles).
As a sulfur host for the lithium–sulfur battery, Ni3S2 anchored to N/S co-doped RGO with a highly pleated structure has demonstrated the strong capture of polysulfides, exhibiting high reversible capacity and cycling stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.