An efficient and step-economic new approach to alkyl citrate natural products from a cyclobutene diester is presented. The key sequence involves a formal [2 + 2]-cycloaddition of a silylketene acetal with dimethylacetylene dicarboxylate to provide the cyclobutene diester 14 with 4.5:1 stereoselectivity. Exposure of diester 14 in acidic methanol effected a hydrolysis, intramolecular oxy-Michael reaction, and cyclobutanone methanolysis cascade to give the triester 15. Iodination and elimination then afforded a key alkyl citrate alkene intermediate, which was converted into the natural products (-)-CJ-13,982 (1), (-)-CJ-13,981 (2), and (-)-L-731,120 (3) via a cross-metathesis and subsequent reduction.
This review highlights the synthesis of members of the alkyl citrate family of natural products. The focus is on the stereoselective construction of the alkyl citrate moiety common to these compounds.
The total syntheses of both the natural and unnatural enantiomers of the alkyl citrate natural product CJ-13,982 (1) from the common d-ribose-derived acid 6 are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.