The size, shape, and behavior of the modern domesticated dog has been sculpted by artificial selection for at least 14,000 years. The genetic substrates of selective breeding, however, remain largely unknown. Here, we describe a genome-wide scan for selection in 275 dogs from 10 phenotypically diverse breeds that were genotyped for over 21,000 autosomal SNPs. We identified 155 genomic regions that possess strong signatures of recent selection and contain candidate genes for phenotypes that vary most conspicuously among breeds, including size, coat color and texture, behavior, skeletal morphology, and physiology. In addition, we demonstrate a significant association between HAS2 and skin wrinkling in the Shar-Pei, and provide evidence that regulatory evolution has played a prominent role in the phenotypic diversification of modern dog breeds. Our results provide a first-generation map of selection in the dog, illustrate how such maps can rapidly inform the genetic basis of canine phenotypic variation, and provide a framework for delineating the mechanistic basis of how artificial selection promotes rapid and pronounced phenotypic evolution.
The features of modern dog breeds that increase the ease of mapping common diseases, such as reduced heterogeneity and extensive linkage disequilibrium, may also increase the difficulty associated with fine mapping and identifying causative mutations. One way to address this problem is by combining data from multiple breeds segregating the same trait after initial linkage has been determined. The multibreed approach increases the number of potentially informative recombination events and reduces the size of the critical haplotype by taking advantage of shortened linkage disequilibrium distances found across breeds. In order to identify breeds that likely share a trait inherited from the same ancestral source, we have used cluster analysis to divide 132 breeds of dog into five primary breed groups. We then use the multibreed approach to fine-map Collie eye anomaly (cea), a complex disorder of ocular development that was initially mapped to a 3.9-cM region on canine chromosome 37. Combined genotypes from affected individuals from four breeds of a single breed group significantly narrowed the candidate gene region to a 103-kb interval spanning only four genes. Sequence analysis revealed that all affected dogs share a homozygous deletion of 7.8 kb in the NHEJ1 gene. This intronic deletion spans a highly conserved binding domain to which several developmentally important proteins bind. This work both establishes that the primary cea mutation arose as a single disease allele in a common ancestor of herding breeds as well as highlights the value of comparative population analysis for refining regions of linkage.
Currently, more than 10 million DNA sequence variations have been uncovered in the human genome. The most detailed variation discovery efforts have focused on candidate genes involved in cardiovascular disease or in susceptibilities associated with exposure to environmental agents. Here we provide an overview of natural genetic variation from the literature and in 510 human candidate genes resequenced for variation discovery. The average human gene contains 126 biallelic polymorphisms, 46 of which are common (> or =5% minor allele frequency) and 5 of which are found in coding regions. Using this complete picture of genetic diversity, we explore conservation, signatures of selection, and historical recombination to mine information useful for candidate gene association studies. In general, we find that the patterns of human gene variation suggest that no one approach will be appropriate for genetic association studies across all genes. Therefore, many different approaches may be required to identify the elusive genotypes associated with common human phenotypes.
Mutations in the aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) gene have been found in patients with Leber congenital amaurosis (LCA), a severe, early-onset form of retinal degeneration. To determine the normal function of AIPL1 and to better understand how mutations in this gene cause disease, we performed a yeast two-hybrid screen to identify AIPL1-interacting proteins in the retina. One of the identified interacting proteins corresponds to NUB1 (NEDD8 Ultimate Buster 1), which is thought to control many biological events, especially cell cycle progression, by downregulating NEDD8 expression. The AIPL1-NUB1 interaction was verified by co-immunoprecipitation studies in Y79 retinoblastoma cells, demonstrating that this interaction occurs within cells that share a number of features with retinal progenitor cells. Furthermore, we examined the localization of the AIPL1 protein within developing and adult retinas, and found that AIPL1 is present in the developing photoreceptor layer of the human retina and within the photoreceptors of the adult retina. Similar to AIPL1, NUB1 is also expressed in the developing and adult retina. Therefore, it is possible that the early-onset form of retinal degeneration seen in LCA patients with AIPL1 mutations may be due to a defect in the regulation of cell cycle progression during photoreceptor maturation. These data raise the possibility that AIPL1 is important for appropriate photoreceptor formation during development and/or survival following differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.