Bathyarchaeota, a recently proposed archaeal phylum, is globally distributed and highly abundant in anoxic sediments. Metabolic pathways of the Bathyarchaeota members are diverse and, hence, this phylum has been proposed to play an important role in global biogeochemical cycles. Bathyarchaeota members are distributed in the estuarine environments. However, limited information is available about their detailed community structure, abundance, and functions in the Pearl River estuary (PRE). In the current study, we performed a comprehensive investigation of the archaeal community in the PRE surface sediments along a salinity gradient, with a focus on Bathyarchaeota. Bathyarchaeota was the dominant archaeal phylum, with the abundance of the bathyarchaeotal 16S rRNA gene ranging from 1.43 × 10 8 to 1.22 × 10 9 copies/g sediment dry weight (d.w.), and Bathy-8 was the dominant subgroup. Thaumarchaeota, Lokiarchaeota, and Euryarchaeota, including Thermoprofundales (MBG-D archaea), were the other major archaeal groups in the PRE. The differences of community distributions in the high-and low-salinity sediments were hence investigated. Statistical analysis revealed that besides salinity, ammonium, and total organic carbon were the most important environmental factors influencing the archaea community structure, including that of Bathyarchaeota, in the PRE. The archaeal network indicated the cooccurrence among Bathyarchaeota, Lokiarchaeota, and Euryarchaeota, while Bathy-6 presented unique correlations compared with other bathyarchaeotal subgroups. These observations indicate that Bathyarchaeota may play a role in ecosystem function through microbe-microbe interactions, revealing a possible different lifestyle for Bathy-6 in eutrophic estuarine sediments.
Archaea are diverse and ubiquitous prokaryotes present in both extreme and moderate environments. Estuaries, serving as links between the land and ocean, harbor numerous microbes that are relatively highly active because of massive terrigenous input of nutrients. Archaea account for a considerable portion of the estuarine microbial community. They are diverse and play key roles in the estuarine biogeochemical cycles. Ammonia-oxidizing archaea (AOA) are an abundant aquatic archaeal group in estuaries, greatly contributing estuarine ammonia oxidation. Bathyarchaeota are abundant in sediments, and they may involve in sedimentary organic matter degradation, acetogenesis, and, potentially, methane metabolism, based on genomics. Other archaeal groups are also commonly detected in estuaries worldwide. They include Euryarchaeota , and members of the DPANN and Asgard archaea. Based on biodiversity surveys of the 16S rRNA gene and some functional genes, the distribution and abundance of estuarine archaea are driven by physicochemical factors, such as salinity and oxygen concentration. Currently, increasing amount of genomic information for estuarine archaea is becoming available because of the advances in sequencing technologies, especially for AOA and Bathyarchaeota , leading to a better understanding of their functions and environmental adaptations. Here, we summarized the current knowledge on the community composition and major archaeal groups in estuaries, focusing on AOA and Bathyarchaeota . We also highlighted the unique genomic features and potential adaptation strategies of estuarine archaea, pointing out major unknowns in the field and scope for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.