Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 10 18 cm −3 ). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron-photon source can be ideal for pump-probe applications with femtosecond time resolution.S ynchrotron light sources are powerful in generating bright X-rays for a wide range of applications in basic science, medicine, and industry (1). However, these machines are usually large in size and expensive for construction and maintenance and are thus unaffordable to many would-be users. With the advent of tabletop ultrashort and ultraintense lasers, laser plasma acceleration (LPA) proposed by Tajima and Dawson (2) has demonstrated its great potential as a compact accelerator and X-ray source. Significant progress in LPA was made in the last decade (3-11): Well-collimated (approximately millirad) quasi-monoenergetic electron beams were first observed in 2004, and the electron energy above gigaelectronvolts over centimeter-scale acceleration lengths were demonstrated in several laboratories in the last few years.While accelerating longitudinally in the laser wakefield, the electron beams also oscillate transversally (wiggling motion) due to the transverse structure of the wakefield, which emits wellcollimated betatron X-rays (12-14). Among several mechanisms to generate X-ray radiation from laser-plasma interactions (15-20), betatron radiation is straightforward and able to deliver larger X-ray photon fluxes per shot [∼10 8 phs/shot (21)] and higher photon energies [up to gamma rays (22)]. The betatron oscillation frequency is given by ω β = ω p (2γ) −1/2 , where ω p is the plasma frequency and γ is the Lorentz factor of the accelerated electron beam. For large-amplitude betatron oscillations (i.e., a few mi...
The promising ability of a plasma wiggler based on laser wakefield acceleration to produce betatron X-rays with photon energies of a few keV to hundreds of keV and a peak brilliance of 1022–1023 photons/s/mm2/mrad2/0.1%BW has been demonstrated, providing an alternative to large-scale synchrotron light sources. Most methods for generating betatron radiation are based on two typical approaches, one relying on an inherent transverse focusing electrostatic field, which induces transverse oscillation, and the other relying on the electron beam catching up with the rear part of the laser pulse, which results in strong electron resonance. Here, we present a new regime of betatron γ-ray radiation generated by stimulating a large-amplitude transverse oscillation of a continuously injected electron bunch through the hosing of the bubble induced by the carrier envelope phase (CEP) effect of the self-steepened laser pulse. Our method increases the critical photon energy to the MeV level, according to the results of particle-in-cell (PIC) simulations. The highly collimated, energetic and femtosecond γ-ray bursts that are produced in this way may provide an interesting potential means of exploring nuclear physics in table top photo nuclear reactions.
X-ray “ghost” imaging has drawn great attention for its potential to obtain images with a high resolution and lower radiation dose in medical diagnosis, even with only a single-pixel detector. However, it is hard to realize with a portable x-ray source due to its low flux. Here, we demonstrate a computational x-ray ghost imaging scheme where a real bucket detector and specially designed high-efficiency modulation masks are used, together with a robust deep learning algorithm in which a compressed set of Hadamard matrices is incorporated into a multi-level wavelet convolutional neural network. With a portable incoherent x-ray source of ∼37 µm diameter, we have obtained an image of a real object from only 18.75% of the Nyquist sampling rate. A high imaging resolution of ∼10 µm has been achieved, which is required for cancer detection and so represents a concrete step toward the realization of a practical low cost x-ray ghost imaging camera for applications in biomedicine, archeology, material science, and so forth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.