Humidity sensors have broad applications in health monitoring, environmental protection and human-machine interface, and robotics. Here, we developed a humidity sensor using alkali oxidation method to grow in situ TiO2 nanowires on two-dimensional Ti3C2 MXene. With an order of magnitude larger surface area compared to pure Ti3C2 or TiO2 materials, the urchin-like Ti3C2/TiO2 composite demonstrates a record high sensitivity in a low relative humidity (RH) environment (∼280 pF/% RH from 7% RH to 33% RH). Complex impedance spectroscopy and Schottky junction theory were employed to understand the underlying sensing mechanisms of the Ti3C2/TiO2 composite under various humidity conditions. We demonstrate the application of humidity sensors made with the Ti3C2/TiO2 composite for noncontact detection of the presence of various liquids as well as human fingers.
Two-dimensional nanomaterial-based photothermal therapy (PTT) is currently under intensive investigation as a promising approach toward curative cancer treatment. However, high toxicity, moderate efficacy, and low uniformity in shape remain critical unresolved issues that hamper their clinical application. Thus, there is an urgent need for developing versatile nanomaterials to meet clinical expectations. To achieve this goal, we developed a stable, highly uniform in size, and nontoxic nanomaterials made of tellurium-selenium (TeSe)–based lateral heterojunction. Systemic delivery of TeSe nanoparticles in mice showed highly specific accumulation in tumors relative to other healthy tissues. Upon exposure to light, TeSe nanoparticles nearly completely eradicated lung cancer and hepatocellular carcinoma in preclinical models. Consistent with tumor suppression, PTT altered the tumor microenvironment and induced immense cancer cell apoptosis. Together, our findings demonstrate an exciting and promising PTT-based approach for cancer eradication.
Tellurium (Te) exhibits many intriguing properties including thermoelectricity, photoelectricity, piezoelectricity, and photoconductivity, and is widely used in detectors, sensors, transistors, and energy devices.
A new member of the IV–V compounds, germanium–phosphorus (Ge–P) compounds, has been shown in experiment and theory to have a tunable bandgap (Eg), excellent chemical stability, strong in‐plane anisotropy, and wide‐range optical absorption, all indicating a promising future in electronic and optoelectronic applications. In this work, the application potential of Ge–P compounds as nonlinear optical (NLO) materials in ultrafast photonics is studied for the first time. The strong light–matter interaction, broad and tunable Ep, and broadband and strong optical response make GeP a likely NLO material for photonics, especially in infrared photonic devices. In addition, 2D GeP nanosheets are mixed with poly(vinylidene fluoride) (PVDF) to obtain a GeP@PVDF composite film, which further improves the stability of the GeP and, for the development of organic photonic devices, helps to slow its degradation. From Z‐scan data and fitting results, it is found that GeP has an excellent broadband NLO response. Moreover, using the GeP@PVDF composite film as a saturable absorber, a high‐stability femtosecond laser with a 722 fs pulse width is obtained in the telecommunications band. Preliminarily, Ge–P compounds display excellent optical properties suggesting that they may be used as NLO materials in advanced photonic devices.
Two-dimensional germanium sulfide (GeS), an analogue of phosphorene, has attracted broad attention owing to its excellent environmental stabilities, fascinating electronic and optical properties, and applications in various nanodevices. In spite of the current achievements on 2D GeS, the report of ultrathin few-layer GeS nanosheets within 5 nm is still lacking. Here in this contribution, we have achieved preparation of ultrathin few-layer GeS nanosheets with thicknesses of 1.3 ± 0.1 nm [approximately three layers (∼3L)], 3.2 ± 0.2 nm (∼6L), and 4.2 ± 0.3 nm (∼8L) via a typical liquid-phase exfoliation (LPE) method. Based on various experimental characterizations and first-principles calculations, the layer-dependent electronic, transport, and optical properties are investigated. For the few-layer GeS nanosheets, enhanced light absorption in the UV–vis region and superior photoresponse behavior with increasing layer number is observed, while for the thin films above 10 nm, the properties degenerate to the bulk feature. In addition, the as-prepared ultrathin nanosheets manifest great potential in the applications of photoelectrochemical (PEC)-type photodetectors, exhibiting excellent and stable periodic photoresponse behavior under the radiation of white light. The ∼8L GeS-based photodetector exhibits superior performance than the thinner GeS nanosheets (<4 nm), even better as compared to the bulk or film (above 10 nm) counterparts in terms of higher photoresponsivity along with remarkable photodetection performance in the UV–vis region. This work not only provides direct and solid evidence of the layer-number evolutionary band structure, mobility, and optical properties of ultrathin 2D GeS nanosheets but also promotes the foreseeable applications of 2D GeS as energy-related photoelectric devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.