The estimation of causal effects in nonrandomized studies should comprise two distinct phases: design, with no outcome data available; and analysis of the outcome data according to a specified protocol. Here, we review and compare point and interval estimates of common statistical procedures for estimating causal effects (i.e. matching, subclassification, weighting, and model-based adjustment) with a scalar continuous covariate and a scalar continuous outcome. We show, using an extensive simulation, that some highly advocated methods have poor operating characteristics. In many conditions, matching for the point estimate combined with within-group matching for sampling variance estimation, with or without covariance adjustment, appears to be the most efficient valid method of those evaluated. These results provide new conclusions and advice regarding the merits of currently used procedures.
Summary The design of any study, whether experimental or observational, that is intended to estimate the causal effects of a treatment condition relative to a control condition, refers to those activities that precede any examination of outcome variables. As defined in our 1983 article (Rosenbaum & Rubin, 1983), the propensity score is the unit-level conditional probability of assignment to treatment versus control given the observed covariates; so, the propensity score explicitly does not involve any outcome variables, in contrast to other summaries of variables sometimes used in observational studies. Balancing the distributions of covariates in the treatment and control groups by matching or balancing on the propensity score is therefore an aspect of the design of the observational study. In this invited comment on our 1983 article, we review the situation in the early 1980’s, and we recall some apparent paradoxes that propensity scores helped to resolve. We demonstrate that it is possible to balance an enormous number of low-dimensional summaries of a high-dimensional covariate, even though it is generally impossible to match individuals closely for all of the components of a high-dimensional covariate. In a sense, there is only one crucial observed covariate, the propensity score, and there is one crucial unobserved covariate, the ‘principal unobserved covariate’. The propensity score and the principal unobserved covariate are equal when treatment assignment is strongly ignorable, that is, unconfounded. Controlling for observed covariates is a prelude to the crucial step from association to causation, the step that addresses potential biases from unmeasured covariates. The design of an observational study also prepares for the step to causation: by selecting comparisons to increase the design sensitivity, by seeking opportunities to detect bias, by seeking mutually supportive evidence affected by different biases, by incorporating quasi-experimental devices such as multiple control groups, and by including the economist’s instruments. All of these considerations reflect the formal development of sensitivity analyses that were largely informal prior to the 1980s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.