Cerebral necrosis after radiotherapy for brain tumors is being recognized as a problem more common than previously estimated. Distinction between this iatrogenic complication and tumor recurrence cannot be made by either CT or MR imaging. By using positron emission tomography (PET) with 18F-deoxyglucose (FOG) we were able to reach a diagnosis of radiation necrosis, later verified, in 10 of 95 patients referred for the purpose of differentiating tumor recurrence from necrosis. The critical PET-FOG feature was focal hypometabolism in the area of necrosis, which contrasted with the hypermetabolism associated with the residual/recurrent tumor. In addition, four cases of cerebral necrosis after supraophthalmic, intraarterial chemotherapy (BCNU) were studied with the PET-FOG method. The area of chemotherapy damage was also characterized by marked hypometabolism. Histology revealed both similarities and differences between radio-and chemonecrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.