We propose a core semantics for Dependent Haskell, an extension of Haskell with full-spectrum dependent types. Our semantics consists of two related languages. The first is a Curry-style dependently-typed language with nontermination, irrelevant arguments, and equality abstraction. The second, inspired by the Glasgow Haskell Compiler's core language FC, is its explicitly-typed analogue, suitable for implementation in GHC. All of our resultsÐchiefly, type safety, along with theorems that relate these two languagesÐhave been formalized using the Coq proof assistant. Because our work is backwards compatible with Haskell, our type safety proof holds in the presence of nonterminating computation. However, unlike other full-spectrum dependently-typed languages, such as Coq, Agda or Idris, because of this nontermination, Haskell's term language does not correspond to a consistent logic.
We define sound and adequate denotational and operational semantics for the stochastic lambda calculus. These two semantic approaches build on previous work that used an explicit source of randomness to reason about higher-order probabilistic programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.