This paper gives in detail a practical general method for the explicit determination of all solutions of any Thue equation. It uses a combination of Baker's theory of linear forms in logarithms and recent computational diophantine approximation techniques. An elaborated example is presented.
Abstract. The diophantine equation x -3xy -y = ±3"° 17"' 19"2 is completely solved as follows. First, a large upper bound for the variables is obtained from the theory of linear forms in p-adic and real logarithms of algebraic numbers. Then this bound is reduced to a manageable size by p-adic and real computational diophantine approximation, based on the L -algorithm. Finally the complete list of solutions is found in a sieving process. The method is in principle applicable to any Thue-Mahler equation, as the authors will show in a forthcoming paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.