SUMMARYThis Letter presents a new feature named structured local binary Kirsch pattern (SLBKP) for image retrieval. Each input color image is decomposed into Y, Cb and Cr components. For each component image, eight 3 × 3 Kirsch direction templates are first performed pixel by pixel, and thus each pixel is characterized by an 8-dimenional edge-strength vector. Then a binary operation is performed on each edge-strength vector to obtain its integer-valued SLBKP. Finally, three SLBKP histograms are concatenated together as the final feature of each input colour image. Experimental results show that, compared with the existing structured local binary Haar pattern (SLBHP)-based feature, the proposed feature can greatly improve retrieval performance. key words: image retrieval, structured local binary Haar pattern, structured local binary Kirsch pattern
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.