We consider in this paper Wigner type representations W i g τ depending on a parameter τ ∈ [0,1] as defined in [2]. We prove that the Cohen class can be characterized in terms of the convolution of such W i g τ with a tempered distribution. We introduce furthermore a class of "quadratic representations" S p τ based on the τ-Wigner, as an extension of the two window Spectrogram (see [2]). We give basic properties of S p τ as subclasses of the general Cohen class. 172Boggiatto Paolo, et. al RESUMENNosotros consideramos en este artículo representaciones de tipo Wigner W i g τ dependiendo de um parámetro τ ∈ [0,1] como definido en [2]. Probamos que la clase Cohen puede ser caracterizada en terminos de la convolución de tales W i g τ con una distribución temperada. Introducimos también la clase de "representaciones cuadraticas" S p τ basado en el τ-Wigner, como una extensión de dos ventanas espectrograma (ver [2]). Nosotros damos propiedades básicas de S p τ como subclases de la clase Cohen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.