Ferroptosis is a new form of regulated cell death, which is characterized by the iron-dependent accumulation of lethal lipid peroxides and involved in many critical diseases. Recent reports revealed that cellular energy metabolism activities such as glycolysis, pentose phosphate pathway (PPP), and tricarboxylic acid cycle are involved in the regulation of key ferroptosis markers such as reduced nicotinamide adenine dinucleotide phosphate (NADPH), glutathione (GSH), and reactive oxygen species (ROS), therefore imposing potential regulatory roles in ferroptosis. Remarkably, tumor cells can activate adaptive metabolic responses to inhibit ferroptosis for self-preservation such as the upregulation of glycolysis and PPP. Due to the rapid proliferation of tumor cells and the intensified metabolic rate, tumor energy metabolism has become a target for disrupting the redox homeostasis and induce ferroptosis. Based on these emerging insights, regulatory impact of those-tumor specific metabolic aberrations is systematically characterized, such as rewired glucose metabolism and metabolic compensation through glutamine utilization on ferroptosis and analyzed the underlying molecular mechanisms. Additionally, those ferroptosis-based therapeutic strategies are also discussed by exploiting those metabolic vulnerabilities, which may open up new avenues for tumor treatment in a clinical context.
N6-methyladenosine modification is the most common RNA modification mechanism in mammals. YTHDF1, a m6A reader, can recognize the m6A of mRNAs to facilitate the interaction with the mRNA ribosome assembly and recruitment of translation initiators to promote translation. From a clinical perspective, YTHDF1 upregulation is frequently observed in breast cancer, but its involvement in those cancer-related events is still unclear. Here we report that YTHDF1 is a cancer driver capable of facilitating the proliferation and invasion of breast cancer cells as well as enhancing tumorigenicity and metastasis through promoting glycolysis. We found that tumor hypoxia can transcriptionally induce HIF1α and post-transcriptionally inhibit the expression of miR-16-5p to promote YTHDF1 expression, which could sequentially enhance tumor glycolysis by upregulating PKM2 and eventually increase the tumorigenesis and metastasis potential of breast cancer cells. Inhibiting YTHDF1 via gene knockdown or miR-16-5p would significantly abolish YTHDF1-dependent tumor growth and metastasis. In summary, we identified the role of the YTHDF1-PKM2 signal axis in the occurrence and development of breast cancer, which can be used as a potential target for breast cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.