The recent rapid development in the field of extracellular vesicles (EVs) based nanotechnology has provided unprecedented opportunities for nanomedicine platforms. As natural nanocarriers, EVs such as exosomes, exosome-like nanoparticles and outer membrane vesicles (OMVs), have unique structure/composition/morphology characteristics, and show excellent physical and chemical/biochemical properties, making them a new generation of theranostic nanomedicine. Here, we reviewed the characteristics of EVs from the perspective of their formation and biological function in inflammatory bowel disease (IBD). Moreover, EVs can crucially participate in the interaction and communication of intestinal epithelial cells (IECs)-immune cells-gut microbiota to regulate immune response, intestinal inflammation and intestinal homeostasis. Interestingly, based on current representative examples in the field of exosomes and exosome-like nanoparticles for IBD treatment, it is shown that plant, milk, and cells-derived exosomes and exosomelike nanoparticles can exert a therapeutic effect through their components, such as proteins, nucleic acid, and lipids. Moreover, several drug loading methods and target modification of exosomes are used to improve their therapeutic capability. We also discussed the application of exosomes and exosome-like nanoparticles in the treatment of IBD. In this review, we aim to better and more clearly clarify the underlying mechanisms of the EVs in the pathogenesis of IBD, and provide directions of exosomes and exosome-like nanoparticles mediated for IBD treatment.
Li-sheng Wang and Jun Yao were responsible for design of the study and reviewed the manuscript. De-Feng Li, Ming-han Luo and Feng Xiong drafted the manuscript. Qing-qing Du, Hai-yang Zhang, Ting-ting Liu and Rui-yue Shi recorded the data. Ming-guang Lai, Ying-xue Li, Yan-hui Tian, Ben-hua Wu and Su Luo performed the data analysis. De-feng Li, Yang Song, Zheng-lei Xu and Ding-guo Zhang performed colonoscopy.
Background and aims Ulcerative colitis (UC) is a heterogeneous disorder with complex pathogenesis. Therefore, in the present study, we aimed to assess genome-wide DNA methylation changes associated explicitly with the pathogenesis of UC. Methods DNA methylation changes were identified by comparing UC tissues with healthy controls (HCs) from the GEO databases. The candidate genes were obtained and verified in clinical samples. Moreover, the underlying molecular mechanism related to Zbtb7b in the pathogenesis of UC was explored using the dextran sodium sulfate (DSS)-induced colitis model. Results Bioinformatic analysis from GEO databases confirmed that Zbtb7b, known as Th-inducing POZ-Kruppel factor (ThPOK), was demethylated in UC tissues. Then, we demonstrated that Zbtb7b was in a hypo-methylation pattern through the DSS-induced colitis model (P = 0.0357), whereas the expression of Zbtb7b at the mRNA and protein levels was significantly up-regulated in the inflamed colonic tissues of UC patients (qRT-PCR, WB, IHC: P < 0.0001, P = 0.0079, P < 0.0001) and DSS-induced colitis model (qRT-PCR, WB, IHC: P < 0.0001, P = 0.0045, P = 0.0004). Moreover, the expression of Zbtb7b was positively associated with the degree of UC activity. Mechanically, over-expression of Zbtb7b might activate the maturation of CD4+T cells (FCM, IF: P = 0.0240, P = 0.0003) and repress the differentiation of double-positive CD4+CD8+T (DP CD4+CD8+T) cells (FCM, IF: P = 0.0247, P = 0.0118), contributing to the production of inflammatory cytokines, such as TNF-α (P = 0.0005, P = 0.0005), IL-17 (P = 0.0014, P = 0.0381), and IFN-γ (P = 0.0016, P = 0.0042), in the serum and colonic tissue of DSS-induced colitis model. Conclusions Epigenetic DNA hypo-methylation of Zbtb7b activated the maturation of CD4+T cells and repressed the differentiation of DP CD4+CD8+ T cells, resulting in the production of inflammatory cytokines and colonic inflammation in UC. Therefore, Zbtb7b might be a diagnostic and therapeutic biomarker for UC, and hypo-methylation might affect the biological function of Zbtb7b.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.