In a tokamak-based fusion power plant, possible scenarios may include regulated sawtooth oscillations to remove thermalized helium from the core of the plasma. During a sawtooth crash, the helium ash and other impurities trapped in the core are driven by the instability to an outer region. However, in a fusion plasma, high energy ions will represent a significant population. We thus study the behaviour of these energetic particles during a sawtooth. This paper presents the modelling of the redistribution of fast ions during a sawtooth reconnection event in a tokamak plasma. Along the lines of the model for the evolution of the flux surfaces during a sawtooth collapse described in Ya.I. Kolesnichenko and Yu.V. Yakovenko 1996 Nucl. Fusion 36 159, we have built a time-dependent electromagnetic model of a sawtooth reconnection. The trajectories of the ions are described by a complete gyro-orbit integration. The fast particles were evolved from specific initial parameters (given energy and uniform spread in pitch) or distributed initially according to a slowing-down distribution created by fusion reactions. Our modelling is used to understand the main equilibrium parameters driving the motions during the collapse and to determine the evolution of the distribution function of energetic ions when different geometries of reconnection are considered.
Two dimensional reduced MHD simulations of neoclassical tearing mode growth and suppression by ECCD are performed. The perturbation of the bootstrap current density and the EC drive current density perturbation are assumed to be functions of the perturbed flux surfaces. In the case of ECCD, this implies that the applied power is flux surface averaged to obtain the EC driven current density distribution. The results are consistent with predictions from the generalized Rutherford equation using common expressions for
Interaction of background molecular hydrogen with magnetized (0.4 T) high density (1 − 5 × 10 20 m −3) low temperature (∼ 3 eV) hydrogen plasma was inferred from the Fulcher band emission in the linear plasma generator Pilot-PSI. In the plasma centre, vibrational temperatures reached 1 eV. Rotational temperatures obtained from the Q(v = 1)-branch were systematically ∼ 0.1 eV lower than the Q(v = 0)-branch temperatures, which were in the range of 0.4-0.8 eV, typically 60% of the translational temperature (determined from the width of the same spectral lines). The latter is attributed to preferential excitation of translational degrees of freedom in collisions with ions on the timescale of their in-plasma residence time. Doppler shifts revealed co-rotation of the molecules with the plasma at an order of magnitude lower angular velocity, confirming that the Fulcher emission connects to background molecules. A simple model estimated a factor of 90 rarefaction of the molecular density at the centre of the plasma column compared to the residual gas density. Temperature and density information was combined to conclude that ion-conversion molecular assisted recombination dominates plasma recombination at a rate of 1 × 10 −15 m 3 s −1. The observations illustrate the general significance of rapid molecule heating in high density hydrogen plasma for estimating molecular processes and how this affects Fulcher spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.