There is increasing evidence that conventional cold dark matter (CDM) models lead to conflicts between observations and numerical simulations of dark matter halos on subgalactic scales, which rules out the favored candidates for CDM, namely weakly interacting massive particles (WIMPs). We propose a mechanism of nonthermal production of WIMPs and study its implications on the power spectrum. Our results show that, in this context, WIMPs as candidates for dark matter can work well both on large scales and on subgalactic scales.
Random Testing (RT) is an important and fundamental approach to testing computer software. Adaptive Random Testing (ART) has been proposed to improve the faultdetection capability of RT. ART employs the location information of successful test cases (those that have been executed but not revealed a failure) to enforce an even spread of random test cases across the input domain. Distance-based ART (D-ART) and Restriction-based ART (R-ART) are the first two ART methods, which have considerably improved the fault-detection capability of RT. Both these methods, however, require additional computation to ensure the generation of evenly spread test cases. To reduce the overhead in test case generation, we present in this paper a new ART method using the notion of iterative partitioning. The input domain is divided into equally sized cells by a grid. The grid cells are categorized into three different groups according to their relative locations to successful test cases. In this way, our method can easily identify those grid cells that are far apart from all successful test cases for test case generation. Our method significantly reduces the time complexity, while keeping the high fault-detection capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.