1. Organ-specific biotransformation was studied in human and rat liver, lung, kidney and small intestine slices and compared on a protein basis, using four model substances. 2. Deethylation of lidocaine was highest in liver slices from both man and rat, followed by the small intestine. 3. Metabolism of testosterone was highest in liver slices, but a different overall metabolic pattern was found between the different organs. 4. Lung, kidney and intestine slices prepared from human and rat organs showed mainly an unknown metabolite of 7-ethoxycoumarin identified as 4-ethoxy-2-hydroxyphenyl propionic acid (EPPA). 5. The maximal metabolism of 7-ethoxycoumarin in slices was equal with in vivo V(max) in the rat. 6. Phase II metabolism of 7-hydroxycoumarin in kidney and intestinal slices was about 60% of the activity in liver slices. 7. In conclusion, organs other than the liver show a surprisingly high drug-metabolizing activity. Thus, the use of precision-cut slices of a combination of drug metabolizing organs in an in vitro test system from both animal and human origin is required for a proper systematic prediction of drug metabolism in man.
ABSTRACT:The aim of this study was to evaluate drug metabolism in rat small intestinal and colon precision-cut slices during 24 h of incubation and the applicability of these slices for enzyme induction studies. Various parameters were evaluated: intracellular levels of ATP (general viability marker), alkaline phosphatase activity (specific epithelial marker), villin expression (specific epithelial marker), and metabolic rates of 7-ethoxycoumarin (CYP1A), testosterone (CYP3A and CYP2B), and 7-hydroxycoumarin (glucuronide and sulfate conjugation) conversions. ATP and villin remained constant up to, respectively, 5 and 8 h in small intestine and up to 24 h in colon. The metabolic rate remained constant in small intestinal slices up to 8 h and decreased afterward to 24 to 92%, depending on the substrate studied. The inducibility of metabolism in small intestinal and colon slices was tested with several inducers at various concentrations and incubation times. The following inducers were used: 3-methylcholanthrene, -naphthoflavone, indirubin, and tertbutylhydroquinone (aryl hydrocarbon receptor ligands), dexamethasone (glucocorticoid receptor/pregnane X receptor ligand) and phenobarbital (constitutive androstane receptor ligand). After incubation with inducers, metabolic rates were evaluated with 7-ethoxycoumarin and testosterone (phase I) and 7-hydroxycoumarin (phase II) as substrate. All inducers elevated the metabolic rates consistent with the available published in vivo induction data. Induction of enzyme activity was already detectable after 5 h (small intestine) and after 8 h (colon) for 3-methylcholanthrene and -naphthoflavone and was clearly detectable for all tested inducers after 24 h (up to 20-fold compared with noninduced controls). In conclusion, small intestinal and colon precision-cut slices are useful for metabolism and enzyme induction studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.