A major transport function of the human intestine involves the absorption of chloride in exchange for bicarbonate. We have studied a recessively inherited defect of this exchange, congenital chloride diarrhoea (CLD; MIM 214700). The clinical presentation of CLD is a lifetime, potentially fatal diarrhoea with a high chloride content. The CLD locus was previously mapped to 7q3 adjacent to the cystic fibrosis gene (CFTR). By refined genetic and physical mapping, a cloned gene having anion transport function, Down-regulated in adenoma (DRA), was implicated as a positional and functional candidate for CLD. In this study, we report segregation of two missense mutations, delta V317 and H124L, and one frameshift mutation, 344delT, of DRA in 32 Finnish and four Polish CLD patients. The disease-causing nature of delta V317 is supported by genetic data in relation to the population history of Finland. By mRNA in situ hybridization, we demonstrate that the expression of DRA occurs preferentially in highly differentiated colonic epithelial cells, is unchanged in Finnish CLD patients with delta V317, and is low in undifferentiated (including neoplastic) cells. We conclude that DRA is an intestinal anion transport molecule that causes chloride diarrhoea when mutated.
The mechanism by which germline mutations of DNA mismatch repair genes cause susceptibility to tumour formation is not yet understood. Studies in vitro indicate that heterozygosity for these mutations, unlike homozygosity, does not affect mismatch repair. Surprisingly, no loss of heterozygosity at the predisposing loci has so far been described in hereditary nonpolyposis colorectal cancers. Here, we show that loss of heterozygosity (LOH) of markers within or adjacent to the MLH1 gene on chromosome 3p occurs nonrandomly in tumours from members of families in which the disease phenotype cosegregates with MLH1. In every informative case, the loss affects the wild type allele. These results suggest that DNA mismatch repair genes resemble tumour suppressor genes in that two hits are required to cause a phenotypic effect.
An association between DiGeorge's syndrome and an unbalanced chromosomal rearrangement leading to trisomy 20pter leads to 20q11 and monosomy 22pter leads to 22q11 was found in four individuals belongings to one family. These and other data from the literature are interpreted to suggest that DiGeorge's syndrome can be caused by deletion of a gene located in chromosome 22, probably in band 22q11.
Dominantly inherited familial amyloidosis, Finnish type (FAF) is caused by the accumulation of a 71-amino acid amyloidogenic fragment of mutant gelsolin (GSN). FAF is common in Finland but is very rare elsewhere. In Finland and in two American families, the mutation is a G654A transition leading to an Asp to Asn substitution at residue 187. We found the same mutation in a Dutch family but a Danish FAF family had a G654T mutation, predicting Asp to Tyr at residue 187. We also found the G654T transversion in a Czech family. Using GSN polymorphisms, different haplotypes were found in the Danish and Czech families. We conclude that substitution of the uncharged Asn or Tyr for the acidic Asp at residue 187 creates a conformation that may be preferentially amyloidogenic for GSN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.