The goldfish pituitary contains two classes of gonadotropin-releasing hormone (GnRH) binding sites, a high affinity/low capacity site and a low affinity/high capacity site (Habibiet al. 1987a), whereas the catfish pituitary contains a single class of high affinity GnRH binding sites (De Leeuwet al. 1988a). Seasonal variations in pituitary GnRH receptor binding parameters, and the effect of castration on pituitary GnRH receptor binding were investigated in goldfish and catfish, respectively. In goldfish, GnRH receptors undergo seasonal variation with the highest pituitary content of both high and low affinity sites occurring during the late stages of gonadal recrudescence. The observed changes in pituitary GnRH receptor content correlate closely with responsiveness to a GnRH agonistin vivo in terms of serum gonadotropin (GTH) levels. In catfish, castration results in a two-fold increase in pituitary GnRH receptor content, which can be reversed by concomitant treatment with androstenedione, but not by the non-aromatizable androgen 11β-hydroxyandrostenedione; changes observed in GnRH receptor content correlate with variations in serum GTH levels and responsiveness to a GnRH agonist. In summary, the present study provides a clear evidence for seasonal variation in pituitary GnRH receptor activity in goldfish, and demonstrates a gonadal feedback mechanism regulating GnRH receptor activity in the catfish pituitary.
Receptors for gonadotropin-releasing hormone (GnRH) were characterized using a radioligand prepared from a superactive analog of salmon GnRH (sGnRH), D-Arg(6)-Pro(9)-sGnRH-NEt (sGnRHa). Binding of(125)I-sGnRHa to catfish pituitary membrane fractions reached equilibrium after 2 h incubation at 4°C. Displacement experiments with several GnRH analogs as well as other peptides, demonstrated the specificity of(125)I-sGnRHa binding. Specific binding was enhanced in the presence of the cation chelator ethylene bis (oxyethylenenitrilo) tetra-acetic acid (EGTA), indicating an inhibitory effect of cations on GnRH-receptor binding. The binding of(125)I-sGnRHa to pituitary membranes was found to be saturable at radioligand concentrations of 5 nM and above. A Scatchard analysis of the saturation data suggested the presence of a single class of high-affinity binding sites (Ka=0.901±0.06×10(9)M(-1), Bmax=1678±150 fmol/mg protein). A comparative study on(125)I-sGnRHa binding to pituitary membrane fractions of male and female catfish, indicated that there were no differences in binding affinity and binding capacity between both sexes. The results demonstrate the presence of specific, saturable GnRH receptors in the African catfish pituitary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.