Research on the neural basis of language processing has often avoided investigating spoken language production by fear of the electromyographic (EMG) artifacts that articulation induces on the electro-encephalogram (EEG) signal. Indeed, such articulation artifacts are typically much larger than the brain signal of interest. Recently, a Blind Source Separation technique based on Canonical Correlation Analysis was proposed to separate tonic muscle artifacts from continuous EEG recordings in epilepsy. In this paper, we show how the same algorithm can be adapted to remove the short EMG bursts due to articulation on every trial. Several analyses indicate that this method accurately attenuates the muscle contamination on the EEG recordings, providing to the neurolinguistic community a powerful tool to investigate the brain processes at play during overt language production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.