Brain-derived neurotrophic factor (BDNF) has been strongly implicated in the synaptic plasticity, neuronal survival and pathophysiology of depression. Lithium and valproic acid (VPA) are two primary mood-stabilizing drugs used to treat bipolar disorder. Treatment of cultured rat cortical neurons with therapeutic concentrations of LiCl or VPA selectively increased the levels of exon IV (formerly rat exon III)-containing BDNF mRNA, and the activity of BDNF promoter IV. Surprisingly, lithium-or VPA-responsive element(s) in promoter IV resides in a region upstream from the calcium-responsive elements (CaREs) responsible for depolarization-induced BDNF induction. Moreover, activation of BDNF promoter IV by lithium or VPA occurred in cortical neurons depolarized with KCl, and deletion of these three CaREs did not abolish lithium-or VPA-induced activation. Lithium and VPA are direct inhibitors of glycogen synthase kinase-3 (GSK-3) and histone deacetylase (HDAC), respectively. We showed that lithium-induced activation of promoter IV was mimicked by pharmacological inhibition of GSK-3 or short interfering RNA (siRNA)-mediated gene silencing of GSK-3a or GSK-3b isoforms. Furthermore, treatment with other HDAC inhibitors, sodium butyrate and trichostatin A, or transfection with an HDAC1-specific siRNA also activated BDNF promoter IV. Our study demonstrates for the first time that GSK-3 and HDAC are respective initial targets for lithium and VPA to activate BDNF promoter IV, and that this BDNF induction involves a novel responsive region in promoter IV of the BDNF gene. Our results have strong implications for the therapeutic actions of these two mood stabilizers.
Parkinson’s disease (PD) is characterized by the selective and progressive loss of dopaminergic (DA) neurons in the midbrain substantia nigra. Currently, available treatment is unable to alter PD progression. Previously, we demonstrated that valproic acid (VPA), a mood stabilizer, anticonvulsant and histone deacetylase (HDAC) inhibitor, increases the expression of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in astrocytes to protect DA neurons in midbrain neuron-glia cultures. The present study investigated whether these effects are due to HDAC inhibition and histone acetylation. Here, we show that two additional HDAC inhibitors, sodium butyrate (SB) and trichostatin A (TSA), mimic the survival-promoting and protective effects of VPA on DA neurons in neuron-glia cultures. Similar to VPA, both SB and TSA increased GDNF and BDNF transcripts in astrocytes in a time-dependent manner. Furthermore, marked increases in GDNF promoter activity and promoter-associated histone H3 acetylation were noted in astrocytes treated with all three compounds, where the time-course for acetylation was similar to that for gene transcription. Taken together, our results indicate that HDAC inhibitors up-regulate GDNF and BDNF expression in astrocytes and protect DA neurons, at least in part, through HDAC inhibition. This study indicates that astrocytes may be a critical neuroprotective mechanism of HDAC inhibitors, revealing a novel target for the treatment of psychiatric and neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.