Brain-derived neurotrophic factor (BDNF) has been strongly implicated in the synaptic plasticity, neuronal survival and pathophysiology of depression. Lithium and valproic acid (VPA) are two primary mood-stabilizing drugs used to treat bipolar disorder. Treatment of cultured rat cortical neurons with therapeutic concentrations of LiCl or VPA selectively increased the levels of exon IV (formerly rat exon III)-containing BDNF mRNA, and the activity of BDNF promoter IV. Surprisingly, lithium-or VPA-responsive element(s) in promoter IV resides in a region upstream from the calcium-responsive elements (CaREs) responsible for depolarization-induced BDNF induction. Moreover, activation of BDNF promoter IV by lithium or VPA occurred in cortical neurons depolarized with KCl, and deletion of these three CaREs did not abolish lithium-or VPA-induced activation. Lithium and VPA are direct inhibitors of glycogen synthase kinase-3 (GSK-3) and histone deacetylase (HDAC), respectively. We showed that lithium-induced activation of promoter IV was mimicked by pharmacological inhibition of GSK-3 or short interfering RNA (siRNA)-mediated gene silencing of GSK-3a or GSK-3b isoforms. Furthermore, treatment with other HDAC inhibitors, sodium butyrate and trichostatin A, or transfection with an HDAC1-specific siRNA also activated BDNF promoter IV. Our study demonstrates for the first time that GSK-3 and HDAC are respective initial targets for lithium and VPA to activate BDNF promoter IV, and that this BDNF induction involves a novel responsive region in promoter IV of the BDNF gene. Our results have strong implications for the therapeutic actions of these two mood stabilizers.
We studied the kinetic disposition and metabolism of E3810 [(+/-)-sodium 2-[[4-(3-methoxypropoxy)-3-methylpyridin-2-yl]methylsulfinyl ]-1H- benzimidazole], a new proton pump inhibitor, and omeprazole in 15 Japanese male volunteers, six of whom were poor metabolizers and nine of whom were extensive metabolizers of S-mephenytoin. All received once-daily 20 mg doses of E3810 or omeprazole for 7 days in a randomized crossover manner, with a 3-week washout period between the two trial phases. The parent drugs and their principal metabolites in plasma and urine were measured on days 1 and 7 after drug administration. The mean values for area under the plasma concentration-time curve (AUC) of omeprazole were 6.3- and 4.4-fold greater, whereas those of E3810 were 1.8- and 1.9-fold greater in poor metabolizers than in extensive metabolizers after the first and final doses, respectively. Although the mean AUC values for both drugs were significantly (p < 0.01 or p < 0.05) greater in poor metabolizers than in extensive metabolizers, the difference in the AUC between the two groups was smaller after E3810 than after omeprazole administration. The AUC of omeprazole tended to increase with the repeated doses in extensive metabolizers, whereas no such change was observed for E3810. The urinary excretions of the principal metabolite(s) of two proton pump inhibitors also reflected the data derived from plasma samples in relation to S-mephenytoin 4'-hydroxylation status. We conclude that the metabolism of two proton pump inhibitors is under coregulatory control of S-mephenytoin 4'-hydroxylase (CYP2C19), but that the magnitude of CYP2C19-mediated metabolism appears to differ between the two drugs. In contrast to omeprazole, the metabolism of E3810 is less saturable in extensive metabolizers during the repetitive dosings.
Neuroprotective properties of the mood stabilizer valproic acid (VPA) are implicated in its therapeutic efficacy. Heat shock protein 70 (HSP70) is a molecular chaperone, neuroprotective and anti-inflammatory agent. The present study aimed to investigate underlying mechanisms and functional significance of HSP70 induction by VPA in rat cortical neurons. VPA treatment markedly upregulated HSP70 protein levels, and this was accompanied by increased HSP70 mRNA levels and promoter hyperacetylation and activity. Other HDAC inhibitors -sodium butyrate, trichostatin A and Class I HDAC-specific inhibitors MS-275 and apicidin, -all mimicked the ability of VPA to induce HSP70. Pretreatment with PI3-kinase inhibitors or an Akt inhibitor attenuated HSP70 induction by VPA and other HDAC inhibitors. VPA treatment increased Sp1 acetylation, and a Sp1 inhibitor, mithramycin, abolished the induction of HSP70 by HDAC inhibitors. Moreover, VPA promoted the association of Sp1 with the histone acetyltransferases p300 and recruitment of p300 to the HSP70 promoter. Further, VPA-induced neuroprotection against glutamate excitotoxicity was prevented by blocking HSP70 induction. Taken together, the data suggest that the PI3-kinase/Akt pathway and Sp1 are likely involved in HSP70 induction by HDAC inhibitors, and induction of HSP70 by VPA in cortical neurons may contribute to its neuroprotective and therapeutic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.