Mitochondria are perhaps the most sophisticated and dynamic responsive sensing systems in eukaryotic cells. The role of mitochondria goes beyond their capacity to create molecular fuel and includes the generation of reactive oxygen species, the regulation of calcium, and the activation of cell death. In endothelial cells, mitochondria have a profound impact on cellular function under both healthy and diseased conditions. In this review, we summarize the basic functions of mitochondria in endothelial cells and discuss the roles of mitochondria in endothelial dysfunction and vascular diseases, including atherosclerosis, diabetic vascular dysfunction, pulmonary artery hypertension, and hypertension. Finally, the potential therapeutic strategies to improve mitochondrial function in endothelial cells and vascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants and calorie restriction.
Time for primary review: 38 days Aims Hazardous environmental and genetic factors can damage endothelial cells to induce atherosclerotic vascular disease. Recent studies suggest that class III deacetylase SIRT1 may promote cell survival via novel antioxidative mechanisms. The current study tested the hypothesis that SIRT1, specifically overexpressed in the endothelium, is atheroprotective. Methods and results Human umbilical vein endothelial cells (HUVECs) were used to study the effects of oxidized low-density lipoprotein (LDL) on SIRT1 expression. Endothelial cell-specific SIRT1 transgenic (SIRT1-Tg) mice were used to study the effects of SIRT1 on aortic vascular tone. SIRT1-Tg mice were crossed with apolipoprotein E null (apoE 2/2 ) mice to obtain SIRT1-Tg/apoE 2/2 mice for the analysis of atherogenesis in the presence of endothelial overexpression of SIRT1. SIRT1 expression in HUVECs was increased by the treatment with oxidative LDL. Adenoviral-mediated overexpression of SIRT1 was protective of apoptosis of HUVECs. Calorie restriction increased, whereas high-fat diet decreased, the SIRT1 expression in mouse aortas. In SIRT1-Tg mice, high fat-induced impairment in endotheliumdependent vasorelaxation was improved compared with that of wild-type littermates. This was accompanied by an upregualtion of aortic endothelial nitric oxide synthase expression in the SIRT1-Tg mice. The SIRT1-Tg/apoE 2/2 mice had less atherosclerotic lesions compared with apoE 2/2 controls, without affecting blood lipids and glucose levels. Conclusion These results suggest that endothelium-specific SIRT1 overexpression likely suppresses atherogenesis via improving endothelial cell survival and function.
Background Pathological cardiac hypertrophy induced by stresses such as aging and neurohumoral activation is an independent risk factor for heart failure and is considered a target for the treatment of heart failure. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. We aimed to investigate the roles of SIRT2 in aging-related and angiotensin II (Ang II)-induced pathological cardiac hypertrophy. Methods Male C57BL/6J wild-type (WT) and Sirt2 knockout (Sirt2-KO) mice were subjected to the investigation of aging-related cardiac hypertrophy. Cardiac hypertrophy was also induced by Ang II (1.3 mg/kg/day for four weeks) in male C57BL/6J Sirt2-KO mice, cardiac-specific SIRT2 transgenic (SIRT2-Tg) mice and their respective littermates (8~12-week-old). Metformin (200 mg/kg/day) was used to treat WT and Sirt2-KO mice that were infused with Ang II. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice. Results SIRT2 protein expression levels were down-regulated in hypertrophic hearts from mice. Sirt2-KO markedly exaggerated cardiac hypertrophy and fibrosis as well as decreases in cardiac ejection fraction and fractional shortening in aged (24-month-old) mice and Ang II-infused mice. Conversely, cardiac-specific SIRT2 overexpression protected the hearts against Ang II-induced cardiac hypertrophy and fibrosis and rescued cardiac function. Mechanistically, SIRT2 maintained the activity of AMP-activated protein kinase (AMPK) in aged and Ang II-induced hypertrophic hearts in vivo as well as in cardiomyocytes in vitro. We identified the liver kinase B1 (LKB1), the major upstream kinase of AMPK, as the direct target of SIRT2. SIRT2 bound to LKB1 and deacetylated it at lysine 48, which promoted the phosphorylation of LKB1 and the subsequent activation of LKB1-AMPK signaling. Remarkably, the loss of SIRT2 blunted the response of AMPK to metformin treatment in mice infused with Ang II and repressed the metformin-mediated reduction of cardiac hypertrophy and protection of cardiac function. Conclusions SIRT2 promotes AMPK activation by deacetylating the kinase LKB1. Loss of SIRT2 reduces AMPK activation, promotes aging-related and Ang II-induced cardiac hypertrophy and blunts metformin-mediated cardioprotective effects. These findings indicate that SIRT2 will be a potential target for therapeutic interventions in aging and stress-induced cardiac hypertrophy.
The paraoxonase (PON) gene cluster contains at least three members, including PON1, PON2, and PON3, located on chromosome 7q21.3-22.1. Until now there has been little insight into the role of the respective gene products in human physiology and pathology. However, emerging evidence from biochemical and genetic experiments is providing clues about the role(s) of the products of these genes, which indicates that PON(s) acts as important guardians against cellular damage from toxic agents, such as organophosphates, oxidized lipids in the plasma low-density lipoproteins. In parallel, substantial data have been published on the association between the polymorphisms of PON(s) and coronary heart disease. It has become clear that the polymorphisms significantly affect the prevalence of coronary heart disease. However, the associations between the PON(s) polymorphisms and most of these conditions were found to be inconsistent when additional populations were investigated. This contribution provides an overview of the status of research of each of the three genes and the available association studies and the potential problems in interpreting the data. We also review the current evidence on the association between PON(s) polymorphisms and diseases other than coronary heart disease and some metabolic quantitative phenotypes, such as plasma lipoproteins, plasma glucose, and birthweight. Finally, we suggest directions for the future that might elucidate the role of the PON genetic polymorphisms in this potentially important function of PON(s) and the role in coronary heart disease and other related diseases.
Cardiac hypertrophy and failure are accompanied by a reprogramming of gene expression that involves transcription factors and chromatin remodeling enzymes. Little is known about the roles of histone methylation and demethylation in this process. To understand the role of JMJD2A, a histone trimethyl demethylase, in cardiac hypertrophy, we generated mouse lines with heart-specific Jmjd2a deletion (hKO) and overexpression (Jmjd2a-Tg). Jmjd2a hKO and Jmjd2a-Tg mice had no overt baseline phenotype, but did demonstrate altered responses to cardiac stresses. While inactivation of Jmjd2a resulted in an attenuated hypertrophic response to transverse aortic constriction-induced (TAC-induced) pressure overload, Jmjd2a-Tg mice displayed exacerbated cardiac hypertrophy. We identified four-and-a-half LIM domains 1 (FHL1), a key component of the mechanotransducer machinery in the heart, as a direct target of JMJD2A. JMJD2A bound to the FHL1 promoter in response to TAC, upregulated FHL1 expression, and downregulated H3K9 trimethylation. Upregulation of FHL1 by JMJD2A was mediated through SRF and myocardin and required its demethylase activity. The expression of JMJD2A was upregulated in human hypertrophic cardiomyopathy patients. Our studies reveal that JMJD2A promotes cardiac hypertrophy under pathological conditions and suggest what we believe to be a novel mechanism for JMJD2A in reprogramming of gene expression involved in cardiac hypertrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.