Sirtuin 3 (SIRT3), a mitochondrial protein, is involved in energy metabolism, cell apoptosis and mitochondrial function. However, the role of SIRT3 in neural stem cells (NSCs) remains unknown. In previous studies, we found that microglia activation-induced cytotoxicity negatively regulated survival of NSCs, along with mitochondrial dysfunction. The aim of this study was to investigate the potential neuroprotective effects of SIRT3 on the microglia activation-induced oxidative stress injury in NSCs and its possible mechanisms. In the present study, microglia-NSCs co-culture system was used to demonstrate the crosstalk between both cell types. The cytotoxicity of microglia activation by Amyloid-β (Aβ) resulted in the accumulation of reactive oxygen species (ROS) and down-regulation of SIRT3, manganese superoxide dismutase (MnSOD) gene expression in NSCs, concomitant to cell cycle arrest at G0/G1 phase, increased cell apoptosis rate and opening of the mitochondrial permeability transition pore (mPTP) and enhanced mitochondrial membrane potential (ΔΨm) depolarization. Furthermore, SIRT3 knockdown in NSCs via small interfering RNA (siRNA) accelerated cell injury, whereas SIRT3 overexpression provided resistance to microglia activation-induced oxidative stress cellular damage. The mechanisms of SIRT3 attenuated activated microglia-induced NSC dysfunction included the decreased mPTP opening and cyclophilin D (CypD) protein expression, inhibition of mitochondrial cytochrome C (Cyt C) release to cytoplasm, declined Bax/B-cell lymphoma 2 (Bcl-2) ratio and reduced caspase-3/9 activity. Taken together, these data imply that SIRT3 ameliorates microglia activation-induced oxidative stress injury through mitochondrial apoptosis pathway in NSCs, these results may provide a novel intervention target for NSC survival.
The results of this meta-analysis from present study indicated that exercise interventions can better improve the QoL and alleviate treatment-related side effects on prostate cancer patients taking ADT, and better therapeutic regimens for PCa patients are likely to emerge in the process.
Microglia (MG)-induced neurotoxicity, a major determinant of Alzheimer's disease, is closely related to the survival of neural stem cells (NSCs). Heat shock protein 75 (Hsp75) has been reported to exert protective effects against environmental stresses; however, whether or not it protects NSCs against MG-derived soluble factor-induced neurotoxicity remains unclear. In the present study, we constructed NSCs that overexpressed human Hsp75 protein and established a co-culture system in order to elucidate the role of Hsp75 in NSC-MG interactions. The results obtained indicated that Hsp75 expression increased after 12 h of soluble factor induction and continued to increase for up to 36 h of treatment. The overexpression of Hsp75 decreased NSC apoptosis and preserved mitochondrial membrane potential. Further experiments revealed that the overexpression of Hsp75 inhibited the formation of cyclophilin D (CypD)-dependent mitochondrial permeability transition pore (mPTP) involvement in neurotoxicity-mediated mitochondrial dysfunction and suppressed the activation of the mitochondrial apoptotic cascade, as demonstrated by the inhibition of the release of cytochrome c (Cytc) and the activation of caspase-3. The findings of this study demonstrate that Hsp75 overexpression prevents the impairment of NSCs induced by MG-derived soluble factors by regulating the opening of mPTP. Thus, Hsp75 warrants further investigation as a potential candidate for protection against neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.