Both Kunming (KM) mice and BALB/c mice have been widely used as rodent models to investigate stress-associated mental diseases. However, little is known about the different behaviors of KM mice and BALB/c mice after social isolation, particularly cognitive and aggressive behaviors. In this study, the behaviors of KM and BALB/c mice isolated for 2, 4 and 8 weeks and age-matched controls were evaluated using object recognition, object location and resident-intruder tests. The recovery of behavioral deficits by re-socialization was also examined for the isolated mice in adolescence. Our study showed that isolation for 2, 4 and 8 weeks led to cognitive deficits and increased aggressiveness for both KM and BALB/c mice. An important finding is that re-socialization could completely recover spatial/non-spatial cognitive deficits resulted from social isolation for both KM and BALB/c mice. In addition, age only impacted aggressiveness of KM mice. Moreover, isolation duration showed different impacts on cognitive and aggressive behaviors for both KM and BALB/c mice. Furthermore, BALB/c mice showed weak spatial/non-spatial memory and low aggressiveness when they were at the same age and isolation duration, compared to KM mice. In conclusion, KM mice and BALB/c mice behaved characteristically under physiology and isolation conditions.
This paper presents a detailed analysis of impurities distribution in metallurgical-grade silicon after CaO-SiO2-CaF2 and CaO-SiO2-CaCl2 slags refining. It demonstrates that the impurities removal efficiency generally increase in metallurgical-grade silicon after CaO-SiO2-CaCl2 slag refining compared to that after CaO-SiO2-CaF2 slag refining. It is also determined that metallic impurities like Fe, Al and Ca tend to co-deposit with Si to form Si-Ca based intermetallic compounds in the precipitate phase after slag refining.
To investigate the effects of the metallurgical route on the defects in mc-Si, various metallurgical routes were conducted. Dislocation formation and the resistivity of the mc-Si were also studied. The results showed that high inhomogeneity in dislocation distribution within individual grains and paralleled tacking faults could be observed when the ingot was grown by using the feedstock prepared by adopting the sequence of slag treatment, acid leaching and vacuum refining. Different grains have various dislocation density, which was showed in ingot grown by utilizing the feedstock prepared by adopting the sequence of vacuum refining, slag treatment and acid leaching, tacking faults could also be seen, as well as some dislocation clusters. The resistivity of this two ingots was detected at various height by using the a 4-point probe silicon tester, it was expected that the resistivity of these two ingots has the same tendency of the change, and the value of the resistivity of the ingot obtained using the previous technology was relatively higher than that of the ingot obtained using the latter technology.
Precipitation phase and impurities distribution of MG-silicon were investigated by vacuum refining followed by slag treatment, and the CaO-SiO2-CaF2 system was adopted for slag treatment. Contrasting the microstructure of precipitated phase in slag treatment with and without vacuum refining pretreated, it could be concluded that the composition of precipitated phases, obtained in MG-Si after vacuum refining followed slag treatment, only consisted of Ca-rich intermetallic silicide phases such as Si-Ca-Ni, Si-Ca-Fe and main impurity phase Si-Ca. And the vacuum refining could make an increase in concentration of the impurity Ti due to its low saturated vapor pressure and silicon loss, which was in favor of the interaction with the impurity B, resulting in the formation of TiB2 that could stay at the slag. Consequently, the vacuum refining could be regarded as an effective method for facilitating the removal of B from MG-Si with slag treatment.
This paper presents a detailed analysis of the effect of slag refining and vacuum treatment on P removal from metallurgical-grade silicon using CaO-SiO2-CaCl2 slag. It demonstrates that both of CaO: SiO2 ratio and CaCl2 content have significant effects on the P removal. Increasing CaO: SiO2 ratio was found to decrease the P removal efficiency after slag refining and vacuum treatment, and the distribution of P shows a tendency to concentrate in the precipitated phase after slag refining. It is also determined that the highest removal efficiency of P was attained when CaCl2 content was 5wt%( CaO:SiO2=1:1), but no obvious change was observed on P distribution after slag refining of varying CaCl2 content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.