Hardness measurements were used to determine the post-irradiation annealing response of A533B class 1 plate steel irradiated to a fluence of 1 x 1019 n/cm2 (E>1 MeV) at 150°C. Rockwell hardness measurements indicated that the material had hardened by 6.6 points on the B scale after irradiation. The irradiation induced hardness increase was associated with a decrease in upper shelf energy from 63.4 J to 5-1.8 J and a temperature shift in the Charpy curve at the 41 J level from 115°C to 215°C. Specimens were annealed after irradiation at temperatures of 343°C (650°F), 399°C (750°F), and 454°C (850°F) for durations of up to one week (168 h). Hardness measurements were made to chart recovery of hardness as a function of time and temperature. Specimens annealed at the highest temperature 454°C recovered the fastest, fully recovering within 144 h. Specimens annealed at 399°C recovered completely within 168 h. Specimens annealed at the lowest temperature, 343°C recovered only ∼70% after 168 h of annealing. After neutron irradiation, a new feature of black spot damage was found to be superimposed on the unirradiated microstructure. The density of black spots was found to vary from 2.3 x 1015/cm3 to 1.1 x 1016/cm3 with an average diameter of 2.85 nm. Following annealing at 454°C for 24 h the black spot damage was completely annealed out. It was concluded that the black spot damage was responsible for 70% of the irradiation-induced hardness.
The last segment of a four-part investigation on the influence of phosphorus and silicon on neutron-induced void swelling of austenitic stainless steels has been completed. This final segment explored the influence of these elements on the macroscopic swelling of developmental alloys irradiated in the 20% cold-worked condition in the Fast Flux Test Facility. As was also seen in the previous three series, a non-monotonic swelling response with respect to phosphorus concentration is sometimes observed. Therefore it is not safe to assume that phosphorus and/or silicon additions will always reduce swelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.