Tanshinone is the liposoluble constituent of Salia miltiorrhiza, a root used in traditional herbal medicine which is known to possess certain health benefits. Although it is known that tanshinones, including tanshinone I (T1), tanshinone IIA (T2A), and cryptotanshinone (CT), can inhibit the growth of lung cancer cells in vitro, the mechanism under which they act is still unclear. AURKA, an oncogene, encodes a serine-threonine kinase which regulates mitotic processes in mammalian cells. Here, we reported that tanshinones mediate AURKA suppression partly through up-regulating the expression of miR-32. We found that tanshinones could inhibit cell proliferation, promote apoptosis, and impede cell-cycle progression, thus performing an antineoplastic function in non-small cell lung cancer (NSCLC). Additionally, we demonstrated that tanshinones attained these effects in part by down-regulating AURKA, corroborating previous reports. Our results showed that in NSCLC, similar effects were obtained with knock-down of the AURKA gene by siRNA. We also verified that AURKA was the direct target of miR-32. Collectively, our results demonstrated that tanshinones could inhibit NSCLC by suppressing AURKA via up-regulating the expressions of miR-32 and other related miRNAs.
MicroRNAs (MiRNAs) are small non-coding RNA molecules which act as important regulators of post-transcriptional gene expression by binding 3'-untranslated region (3'-UTR) of target messenger RNA (mRNA). In this study, we analyzed miRNA-34a (miR-34a) as a tumor suppressor in non-small cell lung cancer (NSCLC) H1299 cell line. The expression level of miR-34a in four different NSCLC cell lines, H1299, A549, SPCA-1, and HCC827, was significantly lower than that in the non-tumorigenic bronchial epithelium cell line BEAS-2B. In human NSCLC tissues, miR-34a expression level was also significantly decreased in pT2-4 compared with the pT1 group. Moreover, miR-34a mimic could inhibit the proliferation and triggered apoptosis in H1299 cells. Luciferase assays revealed that miR-34a inhibited TGFβR2 expression by targeting one binding site in the 3'-UTR of TGFβR2 mRNA. Quantitative real-time PCR (qRT-PCR) and Western blot assays verified that miR-34a reduced TGFβR2 expression at both mRNA and protein levels. Furthermore, downregulation of TGFβR2 by siRNA showed the same effects on the proliferation and apoptosis as miR-34a mimic in H1299 cells. Our results demonstrated that miR-34a could inhibit the proliferation and promote the apoptosis of H1299 cells partially through the downregulation of its target gene TGFβR2.
microRNAs (miRNAs) are a class of non-coding small RNAs that act as negative regulators of gene expression by binding to the 3'-untranslated region (3'-UTR) of target mRNAs. Tumor protein p53, a transcriptional factor, plays an important role in the progression of tumorigenesis. miR-150 was the only miRNA predicted to target 3'-UTR of p53 by Targetscan. In order to investigate the function of miR-150, p53 and relevant miRNAs in non-small cell lung cancer (NSCLC), we constructed two expression vectors of p53 (pcDNA3.1-p53 and pcDNA3.1-p53-3'-UTR) and two report vectors (pGL3-p53-3'-UTR and pGL3-p53-3'-mUTR). The activity of luciferase transfected with miR-150 mimics was lower by 30% when compared to that of the miRNA-negative control (miRNA-NC). Moreover, the p53 protein was downregulated by at least 50% when miR-150 mimics were cotransfected with pcDNA3.1-p53-3'-UTR when compared to miRNA-NC. We also determined the expression of miR-150 and p53 in NSCLC patient tissue samples. The expression of miR-150 in T2 stage tissue samples was higher than that in T1 stage tissue samples. The corresponding target gene p53 was correlated with miR-150 expression. In the present study, we further analyzed the cell cycle distribution. The cells transfected with pcDNA3.1-p53 were significantly arrested in the G1 phase when compared to the control cells. When miR-150 mimics were cotransfected with pcDNA3.1-p53-3'-UTR, the percentage of cells in the G1 phase was significantly lower by 4% when compared to miRNA-NC. To identify miRNAs that are regulated by the p53 protein, qRT-PCR was performed after pcDNA3.1-p53 transfection. miR-34a, miR-184, miR-181a and miR-148 were upregulated significantly. However, there was no distinct difference in the expression of miR-10a, miR-182 and miR-34c. Our results showed that miR-150 targets the 3'-UTR of p53, and p53 protein promotes the expression of miRNAs which affect cell cycle progression. These findings suggest that miR-150, p53 protein and relevant miRNAs are members of a regulatory network in NSCLC tumorigenesis.
Seven lignans and eight phenylpropanoids, including one new lignan, 7S,8R,8'R-5,5′ -dimethoxyariciresinol-4-O-β-D-glucopyranoside (1), were isolated from the liquid juice of Phyllostachys edulis. Their structures were established by extensive spectroscopic analyses. The absolute configuration of the new compound was determined by comparing its experimental electronic circular dichroism (ECD) spectra with calculated ECD spectra. All compounds were evaluated for their anti-inflammatory activity and xanthine oxidase inhibitor activity, and the results showed that compound 9 exhibited a moderate activity in these two bioassays. In addition, all the compounds can be detected in health panda faeces by LC-MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.