This study presents a single-atom Pt catalyst that achieves efficient C–F bond activation, which is a challenging reaction in both chemical synthesis and environmental remediation of recalcitrant fluorinated hydrocarbons. Up to 1.6 wt % Pt was loaded as a single-atom on SiC substrate (Pt1/SiC) using a facile, scalable wet-chemical method developed based on anchor-site and photoreduction techniques. The high catalytic activity of Pt1/SiC for hydrodefluorination of perfluorooctanoic acid, which is a select perfluorinated pollutant of significant environmental concern, is attributed to the effective hydrogen spillover from isolated Pt onto the SiC surface where the resulting Si–H bond further redistributes with the C–F bond to accomplish hydrodefluorination.
Oxidation of β-lactam antibiotics by aqueous ferrate(VI) was investigated to determine reaction kinetics, reaction sites, antibacterial activity changes, and transformation products. Apparent second-order rate constants (kapp) were determined in the pH range 6.0-9.5 for the reaction of ferrate(VI) with penicillins (amoxicillin, ampicillin, cloxacillin, and penicillin G), a cephalosporin (cephalexin), and several model compounds. Ferrate(VI) shows an appreciable reactivity toward the selected β-lactams (kapp for pH 7 = 110-770 M(-1) s(-1)). The pH-dependent kapp could be well explained by considering species-specific reactions between ferrate(VI) and the β-lactams (with reactions occurring at thioether, amine, and/or phenol groups). On the basis of the kinetic results, the thioether is the main reaction site for cloxacillin and penicillin G. In addition to the thioether, the amine is a reaction site for ampicillin and cephalexin, and amine and phenol are reaction sites for amoxicillin. HPLC/MS analysis showed that the thioether of β-lactams was transformed to stereoisomeric (R)- and (S)-sulfoxides and then to a sulfone. Quantitative microbiological assay of ferrate(VI)-treated β-lactam solutions indicated that transformation products resulting from the oxidation of cephalexin exhibited diminished, but non-negligible residual activity (i.e., ∼24% as potent as the parent compound). For the other β-lactams, the transformation products showed much lower (<5%) antibacterial potencies compared to the parent compounds. Overall, ferrate(VI) oxidation appears to be effective as a means of lowering the antibacterial activities of β-lactams, although alternative approaches may be necessary to achieve complete elimination of cephalosporin activities.
When ozonation is employed in advanced water treatment plants to produce drinking water, dissolved organic matter reacts with ozone (O3) and/or hydroxyl radicals (OH) affecting disinfection byproduct (DBP) formation with subsequently used chlorine-based disinfectants. This study presents the effects of varying exposures of O3 and •OH on DBP concentrations and their associated toxicity generated after subsequent chlorination. DBP formation potential tests and in vitro bioassays were conducted after batch ozonation experiments of coagulated surface water with and without addition of tertiary butanol (t-BuOH, 10 mM) and hydrogen peroxide (H2O2, 1 mg/mg O3), and at different pH (6-8) and transferred ozone doses (0-1 mg/mg TOC). Although ozonation led to a 24-37% decrease in formation of total trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetamides, an increase in formation of total trihalonitromethanes, chloral hydrate, and haloketones was observed. This effect however was less pronounced for samples ozonated at conditions favoring molecular ozone (e.g., pH 6 and in the presence of t-BuOH) over •OH reactions (e.g., pH 8 and in the presence of H2O2). Compared to ozonation only, addition of H2O2 consistently enhanced formation of all DBP groups (20-61%) except trihalonitromethanes. This proves that •OH-transformed organic matter is more susceptible to halogen incorporation. Analogously, adsorbable organic halogen (AOX) concentrations increased under conditions that favor •OH reactions. The ratio of unknown to known AOX, however, was greater at conditions that promote direct O3 reactions. Although significant correlation was found between AOX and genotoxicity with the p53 bioassay, toxicity tests using 4 in vitro bioassays showed relatively low absolute differences between various ozonation conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.