A B S T R A C T Three siblings with intense jaundice and hemolytic anemia at birth were found to excrete a high level of coproporphyrin in their urine and feces; the pattern of fecal porphyrin excretion was atypical for hereditary coproporphyria because the major porphyrin was harderoporphyrin (>60%; normal value is <20%). The lymphocyte coproporphyrinogen III oxidase activity of each patient was 10% of control values, which suggests a homozygous state. Both parents showed only mild abnormalities in porphyrin excretion and lymphocyte coproporphyrinogen III oxidase activity decreased to 50% of normal values, as is expected in heterozygous cases of hereditary coproporphyria. Kinetic parameters of coproporphyrinogen III oxidase from these patients were clearly modified, with a Michaelis constant 15-20-fold higher than normal values when using coproporphyrinogen or harderoporphyrinogen as substrates. Maximal velocity was half the normal value, and we also observed a marked sensitivity to thermal denaturation. The possibility that a mutation affecting the enzyme on the active center which is specifically involved in the second decarboxylation (from harderoporphyrinogen to protoporphyrinogen) was eliminated by experiments on rat liver that showed that coproporphyrinogen and harderoporphyrinogen were metabolized at the same active center. The pattern of porphyrin excretion and the coproporphyrinogen oxidase from the three patients exhibited abnormalities that were different from the abnormalities found in another recently described homozygous case of hereditary coproporphyria. We suggest naming this variant of coproporphyrinogen oxidase defect "harderoporphyria."
Proteasome inhibitors are a novel class of compounds that might increase sensitivity to chemotherapy for acute myeloid leukemia (AML). We quantified apoptosis in THP-1 cells incubated with idarubicin (IDA) alone or together with a low concentration of MG132 or bortezomib. The combination of both drugs yielded a percentage of apoptotic cells that was significantly higher than the additive effect of both drugs administered separately (p < 0.01). Isobologram analysis showed that both MG132 and bortezomib interacted synergistically with IDA to induce apoptosis of THP1 cells. Western blot analysis of Bax and Bim show an acumulation of these pro-apoptotic proteins in THP1 treated cells. This increase in Bim preceded the induction of apoptosis and participated in idarubicin-induced apoptosis. Proteasome inhibition also potentiated IDA-induced apoptosis in primary blast cells from 22 AML patients while no such effect was found on normal lymphocytes, PHA-stimulated lymphocytes, normal cord blood CD34+ cells or bone marrow normal myeloid cells. These data show that MG132 and bortezomib specifically sensitize leukemic cells to IDA through an increase in BIM and Bax pro-apoptotic Bcl-2 family proteins.
Immunoreactive delta-aminolevulinate dehydrase (ALA-D) was measured in lysates from two porphyric patients with ALA-D deficiency (enzyme activities were below 2% of the normal level). By using two different immunologic methods, we found a cross-reactive immunologic material (CRIM+) which corresponded to 20% and 33% of the control level. Therefore the molecular basis that accounts for the deficiency of ALA-D in these patients is a structurally modified enzyme. The methods used to determine the molecular weight (by Western blotting) and the isoelectric point (by chromatofocusing) of the mutants did not show any difference by comparison with the normal enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.