Fanconi anemia (FA) is an autosomal recessive disease with diverse clinical symptoms including developmental anomalies, bone marrow failure and early occurrence of malignancies. In addition to spontaneous chromosome instability, FA cells exhibit cell cycle disturbances and hypersensitivity to cross-linking agents. Eight complementation groups (A-H) have been distinguished, each group possibly representing a distinct FA gene. The genes mutated in patients of complementation groups A (FANCA; refs 4,5) and C (FANCC; ref. 6) have been identified, and FANCD has been mapped to chromosome band 3p22-26 (ref. 7). An additional FA gene has recently been mapped to chromosome 9p (ref. 8). Here we report the identification of the gene mutated in group G, FANCG, on the basis of complementation of an FA-G cell line and the presence of pathogenic mutations in four FA-G patients. We identified the gene as human XRCC9, a gene which has been shown to complement the MMC-sensitive Chinese hamster mutant UV40, and is suspected to be involved in DNA post-replication repair or cell cycle checkpoint control. The gene is localized to chromosome band 9p13 (ref. 9), corresponding with a known localization of an FA gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.