Taking the advantages of excellent optical properties, biocompatibility, and photostability of carbon dots, herein, we developed polarity-sensitive polymer carbon dots (PCDs) for visualizing of cellular polarity to real-time monitoring autophagy changes without perturbing the cellular status. The PCDs can be prepared by simply mixing dopamine (DA), H2O2, and o-phenylenediamine (o-PDA) in a common beaker without the need for any special equipment or external energy supply, and the preparation could be completed within 3 min at room temperature. Interestingly, the polarity-sensitive PCDs could emit various types of fluorescence and are insensitive to the excitation light when dispersed in different water/dioxane systems with different polarities. Based on the polarity-sensitive emission of the PCDs, the change of polarity during autophagy has been successfully monitored in living cells. Moreover, the change of polarity detected by PCDs is autophagy-specific (does not occur during apoptosis), occurs under different autophagy-inducing situations (starvation, rapamycin, and trehalose), and requires a normal autophagic flux, showing that PCDs rapidly prepared by polymerization cross-linking at room temperature can be functionally applied in the case of autophagy-related physiological or pathological processes.
Objective: To investigate the role of miR-26a-5p in cell proliferation and doxorubicin sensitivity in hepatocellular carcinoma. Methods: We evaluated miR-26a-5p expression in hepatocellular carcinoma tissues and cell lines by reverse transcription polymerase chain reaction. Cell Counting Kit-8 was used to examine cell proliferation. Relationship between miR-26a-5p and aurora kinase A was evaluated by luciferase report system. Western blot was used to detect expression of aurora kinase A. Results: In this study, we observed miR-26a-5p was downregulated in hepatocellular carcinoma tissues and cell lines. Gain-of-function experiments showed that proliferation rate of hepatocellular carcinoma cells decreased under condition of miR-26a-5p mimics. We found miR-26a-5p mimics could enhance doxorubicin sensitivity of hepatocellular carcinoma cells. Further study showed that aurora kinase A was target gene of miR-26a-5p. Suppression of aurora kinase A could lead to lower cell proliferation and higher doxorubicin sensitivity of hepatocellular carcinoma cells. Conclusion: Our study found that miR-26a-5p could inhibit cell proliferation and enhance doxorubicin sensitivity in hepatocellular carcinoma cells by targeting aurora kinase A.
The numerical model of the unsteady flow field of ducted propellers is based on CFD (computational fluid dynamics). By applying the numerical model, the unsteady hydrodynamic performance of the ducted propeller with the fracture at different positions of a certain blade is numerically analyzed under three different wake current fields. Based on regress analysis ,the relationships between the mean KQ、mean KT and the quantity of the blade fracture of ducted propellers are obtained; and the relationships between hydrodynamic coefficients Kp, KQ, KFy (Bearing force coefficient of the propeller) and wake current fields , the quantity of the blade fracture are respectively further analyzed. The results show that: (1) with the increase of the quantity of the blade fracture, the amplitude of bearing force periodic variation of propellers increases, while the thrust and torque reduce; (2) the bearing force of propellers is similarly sine-varying, and the frequency of its variation is unrelated to the normal variation frequency of the wake current field. The more non-uniform the wake current field is, the more the amplitude of its periodic variation is; (3) the thrust and torque of propeller are similarly sine-varying, and the frequencies of their variation are related to the normal variation frequency of the wake current field. And the frequencies equal the shaft frequency multiplied the normal variation frequency of the wake current field. The more non-uniform the wake current field is, the more the amplitude of their periodic variation is.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.