Polyploidization, a common event during the evolution of different tumours, has been proposed to confer selective advantages to tumour cells by increasing the occurrence of mutations promoting cancer progression and by conferring chemotherapy resistance. While conditions leading to polyploidy in cancer cells have been described, a general mechanism explaining the incidence of this karyotypic change in tumours is still missing. In this study, we tested whether a widespread tumour microenvironmental condition, low pH, could induce polyploidization in mammalian cells. We found that an acidic microenvironment, in the range of what is commonly observed in tumours, together with the addition of lactic acid, induced polyploidization in transformed and non-transformed human cell lines in vitro. In addition, we provide evidence that polyploidization was mainly driven through the process of endoreduplication, i.e. the complete skipping of mitosis in-between two S-phases. These findings suggest that acidic environments, which characterize solid tumours, are a plausible path leading to polyploidization of cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.