1. Multiple-barreled microelectrodes were used to record from neurons in the area postrema of anesthetized dogs and to test the responses of the neurons to a variety of substances in this structure, which is known to function as the chemoceptive trigger zone for emesis. 2. The neurons in area postrema were silent at rest but could be "found" by virtue of their response to ionophoretic glutamate. The glutamic response was brief and of short latency with high frequency of discharge. 3. Dog area postrema neurons were also excited by over 20 other substances, including acetylcholine, the biogenic amines, several peptides, and at least two hormones. Not all agents were excitatory, however. 4. The responses to all excitatory agents except glutamate were similar and unusual. All responses showed a relatively long latency (3-20 s), a long duration of excitation (30 s to many minutes), and a low discharge frequency (1-3 Hz). 5. There was a good correlation between substances that were excitatory on area postrema neurons and substances known to cause emesis. Because emesis due to intravenous application of these substances is known to be abolished in animals with ablation of the area postrema, it is very likely that recordings were from the neurons which trigger the response. 6. Because so many substances elicit the same type of response there is a possibility that all utilize a common second messenger. Neurons were not excited by ionophoresis of guanosine 3',5'-cyclic monophosphate (cGMP) but were excited by 8-bromo-adenosine 3',5'-cyclic monophosphate (cAMP) and by forskolin, an activator of adenylate cyclase. 7. Behavioral studies were performed looking for emetic responses in awake dogs following intravenous injection of apomorphine, insulin, angiotensin II, and leucine enkephalin. For each a threshold concentration could be determined, which would consistently evoke emesis. 8. Dogs pretreated with phosphodiesterase inhibitors (theophylline, 3-isobutyl-1-methylxanthine, or RO 1724) showed a shift in the threshold concentration of the above substances that triggered emesis, such that emesis was evoked by lower concentrations than in the control. 9. These results suggest that neurons of the dog area postrema trigger the emetic reflex in response to specific receptors for a great variety of transmitters, peptides, and hormones, and that these receptors act through a common second messenger, cAMP.
Captain "'Lomas E. Dayton (USAFSAM/RZV) was the Laboratory Project ScienZis-n-Cnarge.-When Government drawing: , pejecifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, tie United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as lIcensing the holder, or any other person or corporation; or as conveying any rights o," permission to manufacture, use, or sell any patented invention that may in at. way be related the-'reto. The animals involved in this study were procured, maintaired, and used in accordance with the Animal Welfare Act and the "Guide for the Care and
A total of 69 soil samples from 20 community gardens in New York City (New York, USA) were collected and analyzed for 23 polycyclic aromatic hydrocarbons (PAHs) and black carbon. For each garden, samples were collected from nongrowing areas (non-bed) and from vegetable-growing beds, including beds with and without visible sources of PAHs. The sum of the US Environmental Protection Agency's 16 priority PAHs ranged up to 150 mg/kg, and the median (5.4 mg/kg) and mean (14.2 mg/kg) were similar to those previously reported for urban areas in the northeast United States. Isomer ratios indicated that the main sources of PAHs were petroleum, coal, and wood combustion. The PAH concentrations were significantly and positively associated with black carbon and with modeled air PAH concentrations, suggesting a consistent relationship between historical deposition of atmospheric carbon-adsorbed PAHs and current PAH soil concentrations. Median PAH soil concentration from non-bed areas was higher (7.4 mg/kg) than median concentration from beds in the same garden (4.0 mg/kg), and significantly higher than the median from beds without visible sources of PAHs (3.5 mg/kg). Median PAH concentration in beds from gardens with records of soil amendments was 58% lower compared with beds from gardens without those records. These results suggest that gardening practices in garden beds without visible sources of PAHs contribute to reduce PAH soil concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.