TGFbeta signaling is initiated when the type I receptor phosphorylates the MAD-related protein, Smad2, on C-terminal serine residues. This leads to Smad2 association with Smad4, translocation to the nucleus, and regulation of transcriptional responses. Here we demonstrate that Smad7 is an inhibitor of TGFbeta signaling. Smad7 prevents TGFbeta-dependent formation of Smad2/Smad4 complexes and inhibits the nuclear accumulation of Smad2. Smad7 interacts stably with the activated TGFbeta type I receptor, thereby blocking the association, phosphorylation, and activation of Smad2. Furthermore, mutations in Smad7 that interfere with receptor binding disrupt its inhibitory activity. These studies thus define a novel function for MAD-related proteins as intracellular antagonists of the type I kinase domain of TGFbeta family receptors.
Early atherosclerotic lesions develop in a topographical pattern that strongly suggests involvement of hemodynamic forces in their pathogenesis. We hypothesized that certain endothelial genes, which exhibit differential responsiveness to distinct fluid mechanical stimuli, may participate in the atherogenic process by modulating, on a local level within the arterial wall, the effects of systemic risk factors. A differential display strategy using cultured human endothelial cells has identified two genes, manganese superoxide dismutase and cyclooxygenase-2, that exhibit selective and sustained up-regulation by steady laminar shear stress (LSS). Turbulent shear stress, a nonlaminar fluid mechanical stimulus, does not induce these genes. The endothelial form of nitric oxide synthase also demonstrates a similar LSSselective pattern of induction. Thus, three genes with potential atheroprotective (antioxidant, antithrombotic, and antiadhesive) activities manifest a differential response to distinct fluid mechanical stimuli, providing a possible mechanistic link between endothelial gene expression and early events in atherogenesis. The activities of these and other LSSresponsive genes may have important implications for the pathogenesis and prevention of atherosclerosis.Vascular endothelium, the single-cell-thick lining of the cardiovascular system, forms a multifunctional, dynamically mutable interface, that is responsive to a variety of pathophysiologic stimuli. Dysfunction of endothelial cells (EC), induced by systemic biochemical risk factors (e.g., hypercholesterolemia, hyperhomocysteinemia, and diabetes), is thought to play a critical role in the development of atherosclerotic vascular disease and its clinical complications (1-3). The strikingly nonrandom distribution of the earliest lesions of atherosclerosis in both humans and experimental animals has suggested to many that hemodynamic forces might be acting as local "biomechanical risk factors"; however, the exact nature of the biomechanical stimuli involved and their influences on EC pathobiology remain ill-defined (4-6). Arterial bifurcations and curvatures, where disturbed flow patterns (flow separation, flow reversal, low amplitude, and fluctuating wall shear stresses) occur, typically are "lesion-prone areas," whereas geometries associated with uniform laminar flow (oscillatory without flow reversal) and relatively constant (time-averaged) wall shear stresses, such as the straight tubular portions of the aorta and its primary tributaries, tend to be "lesion-protected areas" (7-9). Interestingly, these patterns are retained even in genetically modified animals in which systemic risk factors, such as markedly elevated levels of atherogenic plasma lipoproteins, are present (10). These observations indicate that EC may respond differentially to their local fluid mechanical environment, and thus contribute to the characteristic pattern of atherosclerotic lesion development.Although the molecular mechanisms responsible for atherosclerotic lesion initiati...
Brown fat is specialized for energy expenditure and has therefore been proposed to function as a defense against obesity. Despite recent advances in delineating the transcriptional regulation of brown adipocyte differentiation, cellular lineage specification and developmental cues specifying brown-fat cell fate remain poorly understood. In this study, we identify and isolate a subpopulation of adipogenic progenitors (Sca-1 + /CD45 − /Mac1 − ; referred to as Sca-1 + progenitor cells, ScaPCs) residing in murine brown fat, white fat, and skeletal muscle. ScaPCs derived from different tissues possess unique molecular expression signatures and adipogenic capacities. Importantly, although the ScaPCs from interscapular brown adipose tissue (BAT) are constitutively committed brown-fat progenitors, Sca-1 + cells from skeletal muscle and subcutaneous white fat are highly inducible to differentiate into brown-like adipocytes upon stimulation with bone morphogenetic protein 7 (BMP7). Consistent with these findings, human preadipocytes isolated from subcutaneous white fat also exhibit the greatest inducible capacity to become brown adipocytes compared with cells isolated from mesenteric or omental white fat. When muscle-resident ScaPCs are re-engrafted into skeletal muscle of syngeneic mice, BMP7-treated ScaPCs efficiently develop into adipose tissue with brown fat-specific characteristics. Importantly, ScaPCs from obesity-resistant mice exhibit markedly higher thermogenic capacity compared with cells isolated from obesity-prone mice. These data establish the molecular characteristics of tissue-resident adipose progenitors and demonstrate a dynamic interplay between these progenitors and inductive signals that act in concert to specify brown adipocyte development.
Phenylketonuria (PKU) is a genetic disease that is characterized by an inability to metabolize phenylalanine (Phe), which can result in neurotoxicity. To provide a potential alternative to a protein-restricted diet, we engineered Escherichia coli Nissle to express genes encoding Phe-metabolizing enzymes in response to anoxic conditions in the mammalian gut. Administration of our synthetic strain, SYNB1618, to the Pah PKU mouse model reduced blood Phe concentration by 38% compared with the control, independent of dietary protein intake. In healthy Cynomolgus monkeys, we found that SYNB1618 inhibited increases in serum Phe after an oral Phe dietary challenge. In mice and primates, Phe was converted to trans-cinnamate by SYNB1618, quantitatively metabolized by the host to hippurate and excreted in the urine, acting as a predictive biomarker for strain activity. SYNB1618 was detectable in murine or primate feces after a single oral dose, permitting the evaluation of pharmacodynamic properties. Our results define a strategy for translation of live bacterial therapeutics to treat metabolic disorders.
Smad proteins are intracellular mediators of signalling initiated by Tgf-betasuperfamily ligands (Tgf-betas, activins and bone morphogenetic proteins (Bmps)). Smads 1, 2, 3, 5 and 8 are activated upon phosphorylation by specific type I receptors, and associate with the common partner Smad4 to trigger transcriptional responses. The inhibitory Smads (6 and 7) are transcriptionally induced in cultured cells treated with Tgf-beta superfamily ligands, and downregulate signalling in in vitro assays. Gene disruption in mice has begun to reveal specific developmental and physiological functions of the signal-transducing Smads. Here we explore the role of an inhibitory Smad in vivo by targeted mutation of Madh6 (which encodes the Smad6 protein). Targeted insertion of a LacZ reporter demonstrated that Smad6 expression is largely restricted to the heart and blood vessels, and that Madh6 mutants have multiple cardiovascular abnormalities. Hyperplasia of the cardiac valves and outflow tract septation defects indicate a function for Smad6 in the regulation of endocardial cushion transformation. The role of Smad6 in the homeostasis of the adult cardiovascular system is indicated by the development of aortic ossification and elevated blood pressure in viable mutants. These defects highlight the importance of Smad6 in the tissue-specific modulation of Tgf-beta superfamily signalling pathways in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.