A visible-light photocalytic method for the chemoselective transfer hydrogenation of imines in batch and continuous flow is described. The reaction utilizes EtN as both hydrogen source and single-electron donor, enabling the selective reduction of imines derived from diarylketimines containing other reducible functional groups including nitriles, halides, esters, and ketones. The dual role of EtN was confirmed by fluorescence quenching measurements, transient absorption spectroscopy, and deuterium-labeling studies. Continuous-flow processing facilitates straightforward scale-up of the reaction.
The chemoselective reduction of diaryl imines in the presence of competitively reducible groups is uniquely accessed through precise control of reaction and irradiation time by continuous flow visible light photoredox catalysis. The method enables the mild and efficient transfer hydrogenation
of diaryl imines in the presence of sensitive functionality including halides, ester, ketone, and cyano groups. The flow protocol is efficient, rapid (>98% conversion within 9 min) and readily scaled to deliver multigram quantities of amine products in high purity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.