Abstract. Fresh groundwater on barrier islands is affected by changing sea levels and precipitation variability due to climate change and is also vulnerable to anthropogenic processes, such as contamination and groundwater over-abstraction. Constraining groundwater mean residence times (MRTs) and flow paths is essential for understanding and managing these resources. This study uses tritium (3H) and carbon-14 (14C) to determine the MRTs of groundwater along a transect across subtropical North Stradbroke Island, south-east Queensland, Australia. Hydraulic properties, major ion geochemistry and stable isotopes are used to validate residence times and to identify the processes responsible for their variability. 3H activities range from less than 0.01 to 1 TU (tritium units), which are values lower than those of local average rainfall (1.6–2.0 TU). 14C concentrations range from 62.5 to 111 pMC (percent modern carbon). Estimated MRTs determined using lumped parameter models and 3H activities range from 37 to more than 50 years. Recharge occurs over the entire island, and groundwater MRTs generally increase vertically and laterally towards the coastal discharge areas, although no systematic pattern is observed. MRTs estimated from 14C concentrations display similar spatial relationships but have a much greater range (from modern to approximately 5000 years). Water diversion and retention by lower-permeability units in the unsaturated parts of the dune systems are the most likely course for relatively long MRTs to date. The results indicate that the internal structures within the dune systems increase MRTs in the groundwater system and potentially divert flow paths. The structures produce perched aquifer systems that are wide-spread and have a significant influence on regional recharge. The geochemical composition of groundwater remains relatively consistent throughout the island, with the only irregularities attributed to old groundwater stored within coastal peat. The outcomes of this study enhance the understanding of groundwater flow, recharge diversion and inhibition for large coastal sand masses in general, especially for older sand masses that have developed structures from pedogenesis and dune movement. With respect to south-east Queensland, it allows the existing regional groundwater flow model to be refined by incorporating independent MRTs to test models' validity. The location of this large fresh groundwater reservoir, in dry and populous south-east Queensland, means that its potential to be used as a water source is always high. Background information on aquifer distribution and groundwater MRTs is crucial to better validate impact assessment for water abstraction.
Abstract. Fresh groundwater on barrier islands is affected by changing sea levels, groundwater use and precipitation variability due to climate change. These systems are also vulnerable to contamination and groundwater over-abstraction. Constraining groundwater mean residence times (MRT) and flow paths are essential for understanding and managing these resources. This study uses tritium (3H) and carbon-14 (14C) to determine the MRT of groundwater along a bore transect across North Stradbroke Island, South-East Queensland, Australia. Hydraulic properties, major ion geochemistry and stable isotopes are used to validate residence times, and to identify processes responsible for their variability. 3H activities range from 150 years. Recharge occurs over the entire island and groundwater MRT increase vertically and laterally towards the coastal discharge areas. MRT estimated from 14C display similar spatial relationships but have a much greater range (modern to up approximately 5000 years). Water diversion and retention by perched aquifers with underlying lower permeability units in the unsaturated part of the dune systems are so far the most likely course for relatively long MRT. The results indicate that these perched aquifer systems are probably wide spread and have a significant influence on regional recharge. The geochemical composition of groundwater remains relatively consistent throughout the island, with the only irregularities attributed to old groundwater stored within coastal peat. The outcomes of this study enhance the understanding of groundwater flow, recharge diversion and inhibition for large coastal sand masses in general. For south-east Queensland, it allows the existing regional groundwater flow model to be refined by incorporating independent MRT to test model validities. The location of this large fresh groundwater reservoir, in dry and populous South East Queensland, means its potential to be used as a water source is always high. Background information on aquifer distribution and groundwater MRT are crucial to better validate impact assessment for water abstraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.