Bcl-2 is an integral membrane protein located mainly on the outer membrane of mitochondria. Overexpression of Bcl-2 prevents cells from undergoing apoptosis in response to a variety of stimuli. Cytosolic cytochrome c is necessary for the initiation of the apoptotic program, suggesting a possible connection between Bcl-2 and cytochrome c, which is normally located in the mitochondrial intermembrane space. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria. Overexpression of Bcl-2 prevented the efflux of cytochrome c from the mitochondria and the initiation of apoptosis. Thus, one possible role of Bcl-2 in prevention of apoptosis is to block cytochrome c release from mitochondria.
Oxidative stress is two sided: Whereas excessive oxidant challenge causes damage to biomolecules, maintenance of a physiological level of oxidant challenge, termed oxidative eustress, is essential for governing life processes through redox signaling. Recent interest has focused on the intricate ways by which redox signaling integrates these converse properties. Redox balance is maintained by prevention, interception, and repair, and concomitantly the regulatory potential of molecular thiol-driven master switches such as Nrf2/Keap1 or NF-κB/IκB is used for system-wide oxidative stress response. Nonradical species such as hydrogen peroxide (HO) or singlet molecular oxygen, rather than free-radical species, perform major second messenger functions. Chemokine-controlled NADPH oxidases and metabolically controlled mitochondrial sources of HO as well as glutathione- and thioredoxin-related pathways, with powerful enzymatic back-up systems, are responsible for fine-tuning physiological redox signaling. This makes for a rich research field spanning from biochemistry and cell biology into nutritional sciences, environmental medicine, and molecular knowledge-based redox medicine.
Oxidative stress is often defined as an imbalance of pro-oxidants and antioxidants, which can be quantified in humans as the redox state of plasma GSH/GSSG. Plasma GSH redox in humans becomes oxidized with age, in response to oxidative stress (chemotherapy, smoking), and in common diseases (type 2 diabetes, cardiovascular disease). However, data also show that redox of plasma GSH/GSSG is not equilibrated with the larger plasma cysteine/cystine (Cys/CySS) pool, indicating that the "balance" of pro-oxidants and antioxidants cannot be defined by a single entity. The major cellular thiol/disulfide systems, including GSH/GSSG, thioredoxin- 1 (-SH(2)/-SS-), and Cys/CySS, are not in redox equilibrium and respond differently to chemical toxicants and physiologic stimuli. Individual signaling and control events occur through discrete redox pathways rather than through mechanisms that are directly responsive to a global thiol/disulfide balance such as that conceptualized in the common definition of oxidative stress. Thus, from a mechanistic standpoint, oxidative stress may be better defined as a disruption of redox signaling and control. Adoption of such a definition could redirect research to identify key perturbations of redox signaling and control and lead to new treatments for oxidative stress-related disease processes.
Free radical-induced macromolecular damage has been studied extensively as a mechanism of oxidative stress, but large-scale intervention trials with free radical scavenging antioxidant supplements show little benefit in humans. The present review summarizes data supporting a complementary hypothesis for oxidative stress in disease that can occur without free radicals. This hypothesis, which is termed the "redox hypothesis," is that oxidative stress occurs as a consequence of disruption of thiol redox circuits, which normally function in cell signaling and physiological regulation. The redox states of thiol systems are sensitive to twoelectron oxidants and controlled by the thioredoxins (Trx), glutathione (GSH), and cysteine (Cys). Trx and GSH systems are maintained under stable, but nonequilibrium conditions, due to a continuous oxidation of cell thiols at a rate of about 0.5% of the total thiol pool per minute. Redox-sensitive thiols are critical for signal transduction (e.g., H-Ras, PTP-1B), transcription factor binding to DNA (e.g., Nrf-2, nuclear factor-B), receptor activation (e.g., ␣IIb3 integrin in platelet activation), and other processes. Nonradical oxidants, including peroxides, aldehydes, quinones, and epoxides, are generated enzymatically from both endogenous and exogenous precursors and do not require free radicals as intermediates to oxidize or modify these thiols. Because of the nonequilibrium conditions in the thiol pathways, aberrant generation of nonradical oxidants at rates comparable to normal oxidation may be sufficient to disrupt function. Considerable opportunity exists to elucidate specific thiol control pathways and develop interventional strategies to restore normal redox control and protect against oxidative stress in aging and age-related disease.thioredoxin; glutathione; cysteine; hydrogen peroxide; redox signaling; protein thiol ONE OF THE GREAT REDOX BIOLOGISTS of the past century, Howard S. Mason, professed that to advance science, a scientist must interpret observations at the limit of their meaning. The present review of the redox biology of thiol systems addresses the possibility that disruption of the function and homeostasis of thiol systems is the most central feature of oxidative stress that contributes to mechanisms of aging and age-related disease. I have termed this the "redox hypothesis" to facilitate distinction from free radical hypotheses.Many proteins contain redox-sensitive thiols, and reactions of thiol systems occur largely by nonradical two-electron transfers. Accumulating data show that central thiol-disulfide couples are maintained under nonequilibrium conditions in biological systems. This presents a condition wherein changes in abundance and distribution of redox catalysts and changes in rates of generation of relevant oxidants (e.g., peroxides) and precursors for NADPH supply can account for pathological effects of oxidative stress through altered functions of enzymes, receptors, transporters, transcription factors, and structural elements, without free ra...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.