Background
Expanding the tumor, lymph node, metastasis (TNM) staging system by accommodating new prognostic and predictive factors for cancer will improve patient stratification and survival prediction. Here, we introduce machine learning for incorporating additional prognostic factors into the conventional TNM for stratifying patients with lung cancer and evaluating survival.
Methods
Data were extracted from SEER. A total of 77 953 patients were analyzed using factors including primary tumor (T), regional lymph node (N), distant metastasis (M), age, and histology type. Ensemble algorithm for clustering cancer data (EACCD) and C‐index were applied to generate prognostic groups and expand the current staging system.
Results
With T, N, and M, EACCD stratified patients into 11 groups, resulting in a significantly higher accuracy in survival prediction than the 10 AJCC stages (C‐index = 0.7346 vs. 0.7247, increase in C‐index = 0.0099, 95% CI: 0.0091–0.0106, p‐value = 9.2 × 10−147). There nevertheless remained a strong association between the EACCD grouping and AJCC staging (rank correlation = 0.9289; p‐value = 6.7 × 10−22). A further analysis demonstrated that age and histological tumor could be integrated with the TNM. Data were stratified into 12 prognostic groups with an even higher prediction accuracy (C‐index = 0.7468 vs. 0.7247, increase in C‐index = 0.0221, 95% CI: 0.0212–0.0231, p‐value <5 × 10−324).
Conclusions
EACCD can be successfully applied to integrate additional factors with T, N, M for lung cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.