Many real world problems quire a degree of flexibility that is diflicult to achieve using hand programmed algorithms. One such domain is vision-based autonomous driving. In this task, the dual challenges of a constantly changing environment coupled with a real t h e processing constrain make the flexibility and efficiency of a machine learning system essential. This chapter describes just such a learning system, called ALVINN (Autonomous Land Vehicle In a Neural Network). It presents the neural network architecture and training techniques that allow &VI" to drive in a variety of circumstanm including singlelane paved and unpaved roads, multilane lined and unlined roads, and obstacle-ridden on-and offroad environments, at speeds of up to 55 miles per hour.
We present a methodological approach employing magnetoencephalography (MEG) and machine learning techniques to investigate the flow of perceptual and semantic information decodable from neural activity in the half second during which the brain comprehends the meaning of a concrete noun. Important information about the cortical location of neural activity related to the representation of nouns in the human brain has been revealed by past studies using fMRI. However, the temporal sequence of processing from sensory input to concept comprehension remains unclear, in part because of the poor time resolution provided by fMRI. In this study, subjects answered 20 questions (e.g. is it alive?) about the properties of 60 different nouns prompted by simultaneous presentation of a pictured item and its written name. Our results show that the neural activity observed with MEG encodes a variety of perceptual and semantic features of stimuli at different times relative to stimulus onset, and in different cortical locations. By decoding these features, our MEG-based classifier was able to reliably distinguish between two different concrete nouns that it had never seen before. The results demonstrate that there are clear differences between the time course of the magnitude of MEG activity and that of decodable semantic information. Perceptual features were decoded from MEG activity earlier in time than semantic features, and features related to animacy, size, and manipulability were decoded consistently across subjects. We also observed that regions commonly associated with semantic processing in the fMRI literature may not show high decoding results in MEG. We believe that this type of approach and the accompanying machine learning methods can form the basis for further modeling of the flow of neural information during language processing and a variety of other cognitive processes.
Human subjects ranging in age from 18 to 85 years underwent classical conditioning of the eyeblink response to a tone conditioned stimulus (CS) and an air-puff unconditioned stimulus (UCS). There was a decline in percentage of conditioned responses with age. This decline was most noticeable in subjects over age 50. These conditioning deficits were not due to age-related changes in sensitivity to the tone CS or the air-puff UCS, nor could the conditioning deficits be attributed to an age-related decline in general cognitive abilities or to changes in spontaneous blink rates. The results are discussed in terms of using the classically conditioned eyeblink in humans in conjunction with the classically conditioned nictitating membrane response in rabbits as a model system for studying the neurobiology of age-related conditioning deficits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.