The recognition that mitochondria participate in folate-mediated one-carbon metabolism grew out of pioneering work beginning in the 1950s from the laboratories of D.M. Greenberg, C.G. Mackenzie, and G. Kikuchi. These studies revealed mitochondria as the site of oxidation of one-carbon donors such as serine, glycine, sarcosine, and dimethylglycine. Subsequent work from these laboratories and others demonstrated the participation of folate coenzymes and folate-dependent enzymes in these mitochondrial processes. Biochemical and molecular genetic approaches in the 1980s and 1990s identified many of the enzymes involved and revealed an interdependence of cytoplasmic and mitochondrial one-carbon metabolism. These studies led to the development of a model of eukaryotic one-carbon metabolism that comprises parallel cytosolic and mitochondrial pathways, connected by one-carbon donors such as serine, glycine, and formate. Sequencing of the human and other mammalian genomes has facilitated identification of the enzymes that participate in this intercompartmental one-carbon metabolism, and animal models are beginning to clarify the roles of the cytoplasmic and mitochondrial isozymes of these enzymes. Identifying the mitochondrial transporters for the one-carbon donors and elucidating how flux through these pathways is controlled are two areas ripe for exploration.
Folate coenzymes supply the activated one-carbon units required in nucleic acid biosynthesis, mitochondrial and chloroplast protein biosynthesis, amino acid metabolism, methyl group biogenesis, and vitamin metabolism. Because of its central role in purine and thymidylate biosynthesis, folate-mediated one-carbon metabolism has been the target of many anticancer drug therapies. This review is a summary of recent results that suggest that folate-mediated one-carbon metabolism is highly compartmentalized in eukaryotic cells. Evidence exists for compartmentation of folate coenzymes and their one-carbon units between intracellular organelles, for substrate channeling of folate coenzymes, and for compartmentation by intracellular folate-binding proteins. Metabolic, regulatory, and therapeutic implications of these processes are discussed.
Maternal supplementation with folic acid is known to reduce the incidence of neural tube defects (NTDs) by as much as 70%. Despite the strong clinical link between folate and NTDs, the biochemical mechanisms through which folic acid acts during neural tube development remain undefined. The Mthfd1l gene encodes a mitochondrial monofunctional 10-formyl-tetrahydrofolate synthetase, termed MTHFD1L. This gene is expressed in adults and at all stages of mammalian embryogenesis with localized regions of higher expression along the neural tube, developing brain, craniofacial structures, limb buds, and tail bud. In both embryos and adults, MTHFD1L catalyzes the last step in the flow of one-carbon units from mitochondria to cytoplasm, producing formate from 10-formyl-THF. To investigate the role of mitochondrial formate production during embryonic development, we have analyzed Mthfd1l knockout mice. All embryos lacking Mthfd1l exhibit aberrant neural tube closure including craniorachischisis and exencephaly and/or a wavy neural tube. This fully penetrant folate-pathway mouse model does not require feeding a folate-deficient diet to cause this phenotype. Maternal supplementation with sodium formate decreases the incidence of NTDs and partially rescues the growth defect in embryos lacking Mthfd1l . These results reveal the critical role of mitochondrially derived formate in mammalian development, providing a mechanistic link between folic acid and NTDs. In light of previous studies linking a common splice variant in the human MTHFD1L gene with increased risk for NTDs, this mouse model provides a powerful system to help elucidate the specific metabolic mechanisms that underlie folate-associated birth defects, including NTDs.
Nodular expansion of glomerular mesangium with increased amounts of extracellular matrix (ECM) material is pathognomic of diabetic nephropathy. The precise mechanisms involved in this accumulation are unknown. Recently, we reported using a solid-phase enzyme-linked immunosorbent assay (ELISA) technique that glomerular mesangial cells, the principal cell type residing in glomerular mesangium, accumulate 50-60% more fibronectin (FN), laminin (LM), and type IV collagen (T-IV) when cultured in medium containing high glucose (30 mM) (S. H. Ayo, R. A. Rodnik, J. Garoni, W. F. Glass II, and J. I. Kreiberg. Am. J. Pathol. 136: 1339-1348, 1990). ECM assembly is controlled by its rate of synthesis and degradation, as well as its binding and rate of incorporation into the ECM. To elucidate the mechanisms involved, pulse-chase experiments were designed to estimate ECM protein synthesis from the incorporation of Trans-35S [( 35S]methionine, [35S]cysteine) into immunoprecipitated FN, LM, and T-IV. mRNA levels were examined, and degradation rates were estimated from the disappearance of radioactivity from matrix proteins in mesangial cells previously incubated with Trans-35S. One week of growth in 30 mM glucose resulted in approximately 40-50% increase in the synthesis of all three matrix proteins compared with 10 mM glucose-grown cells. This was accompanied by a significant increase in the transcripts for all three matrix proteins (approximately twofold). The specific activity of the radiolabel in trichloroacetic acid-precipitable cell protein showed no difference between cells grown in 10 or 30 mM glucose, indicating that total protein synthesis was unchanged. After 1 wk, the rate of FN, LM, and T-IV collagen degradation was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)
Mitochondrial folate-dependent one-carbon (1-C) metabolism converts 1-C donors such as serine and glycine to formate, which is exported and incorporated into the cytoplasmic tetrahydrofolate (THF) 1-C pool. Developing embryos depend on this mitochondrial pathway to provide 1-C units for cytoplasmic process such as de novo purine biosynthesis and the methyl cycle. This pathway is composed of sequential methylene-THF dehydrogenase, methenyl-THF cyclohydrolase, and 10-formyl-THF synthetase activities. In embryonic mitochondria, the bifunctional MTHFD2 enzyme catalyzes the dehydrogenase and cyclohydrolase reactions, but the enzyme responsible for the mitochondrial synthetase reaction has not been identified in embryos. A monofunctional 10-formyl-THF synthetase (MTHFD1L gene product) functions in adult mitochondria and is a likely candidate for the embryonic activity. Here we show that the MTHFD1L enzyme is present in mitochondria from normal embryonic tissues and embryonic fibroblast cell lines, and embryonic mitochondria possess the ability to synthesize formate from glycine. The MTHFD1L transcript was detected at all stages of mouse embryogenesis examined. In situ hybridizations showed that MTHFD1L was expressed ubiquitously throughout the embryo but with localized regions of higher expression. The spatial pattern of MTHFD1L expression was virtually indistinguishable from that of MTHFD2 and MTHFD1 (cytoplasmic C 1 -THF synthase) in embryonic day 9.5 mouse embryos, suggesting coordinated regulation. Finally, we show using stable isotope labeling that in an embryonic mouse cell line, greater than 75% of 1-C units entering the cytoplasmic methyl cycle are mitochondrially derived. Thus, a complete pathway of enzymes for supplying 1-C units from the mitochondria to the methyl cycle in embryonic tissues is established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.