Using function approximation to represent a value function is necessary for continuous and high-dimensional state spaces. Linear function approximation has desirable theoretical guarantees and often requires less compute and samples than neural networks, but most approaches suffer from an exponential growth in the number of functions as the dimensionality of the state space increases. In this work, we introduce the wavelet basis for reinforcement learning. Wavelets can effectively be used as a fixed basis and additionally provide the ability to adaptively refine the basis set as learning progresses, making it feasible to start with a minimal basis set. This adaptive method can either increase the granularity of the approximation at a point in state space, or add in interactions between different dimensions as necessary. We prove that wavelets are both necessary and sufficient if we wish to construct a function approximator that can be adaptively refined without loss of precision. We further demonstrate that a fixed wavelet basis set performs comparably against the high-performing Fourier basis on Mountain Car and Acrobot, and that the adaptive methods provide a convenient approach to addressing an oversized initial basis set, while demonstrating performance comparable to, or greater than, the fixed wavelet basis. To aid in reproducibility, we publicly release our source code. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.