Neurogenesis in mammals occurs throughout life in two brain regions: the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Development and regulation of the V-SVZ and SGZ is unique to each brain region, but with several similar characteristics. Alterations to the production of new neurons in neurogenic regions have been linked to psychiatric and neurodegenerative disorders. Decline in neurogenesis in the SGZ correlates with affective and psychiatric disorders, and can be reversed by antidepressant and antipsychotic drugs. Likewise, neurogenesis in the V-SVZ can also be enhanced by antidepressant drugs. The regulation of neurogenesis by neurotransmitters, particularly monoamines, in both regions suggests that aberrant neurotransmitter signaling observed in psychiatric disease may play a role in the pathology of these mental health disorders. Similarly, the cognitive deficits that accompany neurodegenerative disease may also be exacerbated by decreased neurogenesis. This review explores the regulation and function of neural stem cells in rodents and humans, and the involvement of factors that contribute to psychiatric and cognitive deficits. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry.
Neural stem cells (NSCs) exist throughout life in the ventricular-subventricular zone (V-SVZ) of the mammalian forebrain. During aging NSC function is diminished through an unclear mechanism. In this study, we establish microglia, the immune cells of the brain, as integral niche cells within the V-SVZ that undergo ageassociated repositioning in the V-SVZ. Microglia become activated early before NSC deficits during aging resulting in an antineurogenic microenvironment due to increased inflammatory cytokine secretion. These ageassociated changes were not observed in non-neurogenic brain regions, suggesting V-SVZ microglia are specialized. Using a sustained inflammatory model in young adult mice, we induced microglia activation and inflammation that was accompanied by reduced NSC proliferation in the V-SVZ. Furthermore, in vitro studies revealed secreted factors from activated microglia reduced proliferation and neuron production compared to secreted factors from resting microglia. Our results suggest that age-associated chronic inflammation contributes to declines in NSC function within the aging neurogenic niche.
The dopamine transporter (DAT) regulates synaptic dopamine (DA) in striatum and modulation of DAT can affect locomotor activity. Thus, in Parkinson’s disease (PD), DAT loss could affect DA clearance and locomotor activity. The locomotor benefits of L-DOPA may be mediated by transport through monoamine transporters and conversion to DA. However, its impact upon DA reuptake is unknown and may modulate synaptic DA. Using the unilateral 6-OHDA rat PD model, we examined [3H]DA uptake dynamics in relation to striatal DAT and tyrosine hydroxylase (TH) protein loss compared with contralateral intact striatum. Despite >70% striatal DAT loss, DA uptake decreased only ∼25% and increased as DAT loss approached 99%. As other monoamine transporters can transport DA, we determined if norepinephrine (NE) and serotonin (5-HT) differentially modulated DA uptake in lesioned striatum. Unlabeled DA, NE, and 5-HT were used, at a concentration that differentially inhibited DA uptake in intact striatum, to compete against [3H]DA uptake. In 6-OHDA lesioned striatum, DA was less effective, whereas NE was more effective, at inhibiting [3H]DA uptake. Furthermore, norepinephrine transporter (NET) protein levels increased and desipramine was ∼two-fold more effective at inhibiting NE uptake. Serotonin inhibited [3H]DA uptake, but without significant difference between lesioned and contralateral striatum. L-DOPA inhibited [3H]DA uptake two-fold more in lesioned striatum and inhibited NE uptake ∼five-fold more than DA uptake in naïve striatum. Consequently, DA uptake may be mediated by NET when DAT loss is at PD levels. Increased inhibition of DA uptake by L-DOPA and its preferential inhibition of NE over DA uptake, indicates that NET-mediated DA uptake may be modulated by L-DOPA when DAT loss exceeds 70%. These results indicate a novel mechanism for DA uptake during PD progression and provide new insight into how L-DOPA affects DA uptake, revealing possible mechanisms of its therapeutic and side effect potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.