Clinical isolates of Yersinia enterocolitca, which belong to mouse-lethal serotypes, produce the siderophore yersiniophore. Siderophore production was shown to be iron regulated and to reach maximum production in late log phase. Yersiniophore is a fluorescent siderophore with maximum excitation at 270 nm and a major emission peak at 428 nm. Absorption maxima were seen at 210 and 250 nm with a low broad peak from 280 to 320 nm. Purification of unchelated yersiniophore for structural analysis was made difficult by low yields (1-2 mg mg-1), and susceptibility to acid hydrolysis, oxidation and possibly polymerization. Yersinophore was therefore purified as an Al3+ chelate, which was found to be stable in solution for several weeks. To purify Al(3+)-yersinophore, unchelated yersiniophore was first extracted from culture supernatants with dichloromethane, concentrated by rotary evaporation and adsorbed to a DEAE-sephacel column. Al(3+)-yersiniophore was eluted with 0.01 M AlCl3 and further purified by HPLC. The structure was established by a combination of elemental analysis, high resolution mass spectrometry and two-dimensional NMR experiments. Yersiniophore is a phenolate-thiazole siderophore with the formula C21H24N3O4S3Al and a molecular weight of 505.07404 when chelated to Al3+. The structure of yersiniophore was determined to be closely related to the structures of pyochelin, produced by Pseudomonas aeruginosa, and anguibactin, produced by Vibrio anguillarum.
The Boreal forest fulvic acid known as Laurentian fulvic acid (LFA) has been interrogated by state of the art heteronuclear and 2D high resolution NMR techniques. It is shown that one can obtain very highly resolved and informative spectra of a traditionally fractionated material. It was possible to observe a proton coupled system of up to seven bonds in the TOCSY spectrum and 329 peaks in the 1H,13C-HSQC spectrum. It is found that the majority of the nitrogen in this sample is in the form of ammonium cations. From the combination of inverse-gated decoupling, APT, and INEPT 13C spectra of LFA it can be concluded that while the aromatic moieties of LFA are highly unfunctionalized, the carbohydrate moieties are highly functionalized. Proton coupled networks are observed in the TOCSY spectrum between and within the aliphatic, functionalized aliphatic, and heteroatom substituted regions and, to a lesser extent, also between the amine/aromatic and heteroatom substituted regions. The HMBC spectrum confirms that both the aliphatic and heteroatom moieties are highly functionalized with carboxylic and alcoholic functional groups, while the aromatic moieties are very sparsely functionalized with phenolic and carboxylic functionalities. Additionally, specific model molecular structures have been identified which are consistent with experimental evidence and are in full agreement with our previously derived meso-model based on solid-state 13C NMR data. Finally, some of the shortcomings of 2D liquid-state NMR for the characterization of humic materials are addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.