Lipid droplets are cellular organelles, structurally similar to lipoprotein particles. Lipid droplets include a neutral lipid core composed largely of triglycerides, surrounded by a phospholipid monolayer and coated with surface proteins that provide an interface for various aspects of lipid metabolism, including lipid transport, lipogenesis, and lipolysis (1-5). Lipolysis is an important mechanism by which cells release energy stored in lipid droplets; its impairment has been linked to cellular lipotoxicity and insulin resistance (6). Studies are needed to gain an understanding of the underlying molecular mechanisms regulating lipolysis. Although all cells are equipped to perform lipolysis, the extent of lipid accumulation and specific components of the lipolytic pathway are variable, depending on the type of cell.Numerous recent studies have led to consensus that members of the PAT family of proteins, originally named for Perilipin, Adipose differentiation-related protein (ADFP) 4 and Tail Interacting Protein 47 (TIP47), play conserved structural and functional roles on lipid droplets (6 -9). Proteomic studies have identified a "signature" composition for lipid droplets from a variety of types of cells that includes at least one PAT family member. In mammalian cells, the PAT family includes perilipin
Major depression disorder is a common psychiatric disease with a major economic impact on society. In many cases, no effective treatment is available. The etiology of major depression is complex, but it is clear that the disease is, to a large extent, determined genetically, especially among individuals with a familial history of major depression, presumably through the involvement of multiple predisposition genes in addition to an environmental component. As a first step toward identification of chromosomal loci contributing to genetic predisposition to major depression, we have conducted a genomewide scan by using 628 microsatellite markers on 1,890 individuals from 110 Utah pedigrees with a strong family history of major depression. We identified significant linkage to major depression in males at marker D12S1300 (multipoint heterogeneity LOD score 4.6; P=.00003 after adjustment for multiple testing). With additional markers, the linkage evidence became highly significant, with the multipoint heterogeneity LOD score at marker D12S1706 increasing to 6.1 (P=.0000007 after adjustment for multiple testing). This study confirms the presence of one or more genes involved in psychiatric diseases on the q arm of chromosome 12 and provides strong evidence for the existence of a sex-specific predisposition gene to major depression at 12q22-q23.2.
The molecular etiology of obesity predisposition is largely unknown. Here, we present evidence that genetic variation in TBC1D1 confers risk for severe obesity in females. We identified a coding variant (R125W) in TBC1D1 that segregated with the disease in 4p15-14-linked obesity pedigrees. In cases derived from pedigrees with the strongest linkage evidence, the variant was significantly associated with obesity (P=0.000007) and chromosomes carrying R125W accounted for the majority of the evidence that originally linked 4p15-14 with the disease. In addition, by selecting families that segregated R125W with obesity, we were able to generate highly significant linkage evidence for an obesity predisposition locus at 4q34-35. This result provides additional and confirming evidence that R125W affects obesity susceptibility, delimits the location of an obesity gene at 4q34-35 and identifies a gene/gene interaction that influences the risk for obesity predisposition. Finally, although the function of TBC1D1 is unknown, the protein is structurally similar to a known regulator of insulin-mediated Glut4 translocation.
Although the predisposition to morbid obesity is heritable, the identities of the disease-causing genes are largely unknown. Therefore, we have conducted a genomewide search with 628 markers, using multigenerational Utah pedigrees to identify genes involved in predisposition to obesity. In the genomewide search, we identified a highly significant linkage to high body-mass index in female patients, at D4S2632, with a multipoint heterogeneity LOD (HLOD) score of 6.1 and a nonparametric linkage (NPL) score of 5.3. To further delineate the linkage, we increased both the marker density around D4S2632 and the size of our pedigree data set. As a result, the linkage evidence increased to a multipoint HLOD score of 9.2 (at D4S3350) and an NPL score of 11.3. Evidence from almost half of the families in this analysis support this linkage, and therefore the gene in this region might account for a significant percentage of the genetic predisposition to severe obesity in females. However, further studies are necessary to clarify the effect that this gene has in males and in the general population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.